Catch and Release: Fishing for Barium Ions

Dec 05, 2006
Catch and Release: Fishing for Barium Ions
Peter Rowson examines a vacuum system containing a liquid xenon cell, which was used to test cryogenically cooled "fishing poles." Credit: Stanford Linear Accelerator Center

How do you identify the rare thing you're looking for in a vast sea? Go fishing.

Researchers on the Enriched Xenon Observatory (EXO) project, including a group from SLAC, are currently developing ways to catch barium ion "fish" from inside a multi-ton vessel of liquid. They then remove the ions from the liquid and release them from the fishing pole so they can be identified as barium.

A barium-136 ion is the unmistakable sign that somewhere in the sea of xenon-136, a xenon atom underwent radioactive decay. If the two electrons released from that decay have a particular energy, scientists will have hooked the proof that neutrinos are their own anti-particle—an exciting but unproven idea. The observation will also give EXO a way to measure the scanty mass of neutrinos.

The radioactive decay normally emits two neutrinos as well, yet ironically, finding a decay with no neutrinos is what will tell scientists that neutrinos and anti-neutrinos are the same thing. In "neutrinoless double beta decay," the electrons carry all the decay energy otherwise shared with the neutrinos.

Fishing for barium will help the experiment separate the real fish from spurious fish—electrons in the right energy range that come from other sources, such as natural radioactivity and cosmic rays.

After a xenon decay, "the barium ion is sitting there. It hardly moves, so you have to go fish it out," said EXO physicist Peter Rowson.

SLAC has already demonstrated that an electrostatic probe—a small metal fishing pole—can pick up ions from xenon liquid. The probe's electric field attracts positively charged ions. R&D now centers on how to unhook the barium ion from the probe, so it can be identified by a laser system developed by Stanford University, which leads the EXO collaboration. The SLAC group has developed one approach, a cryogenically cooled probe.

"When the probe is dipped in the liquid, xenon ice forms and the ion gets trapped on ice. We pull the probe out, let it thaw and release the ion," said Rowson.

Just don't try it on real fish.

Source: by Heather Rock Woods, Stanford Linear Accelerator Center

Explore further: New insights found in black hole collisions

Related Stories

Big chill sets in as RHIC physics heats up

Feb 04, 2014

If you think it's been cold outside this winter, that's nothing compared to the deep freeze setting in at the Relativistic Heavy Ion Collider (RHIC), the early-universe-recreating "atom smasher" at the U.S. ...

Shaking the electron has strengthened quantum mechanics

Aug 24, 2012

Decays of atomic nuclei are potential sources of information on fundamental phenomena occurring in the quantum world. Unfortunately, it is a rather difficult task to model such processes. However, NCBJ physicists ...

Tin-100 produced in key nuclear physics experiment

Jun 20, 2012

A few minutes after the Big Bang the universe contained no other elements than hydrogen and helium. Physicists of the Technische Universitaet Muenchen and the Helmholtz Center for Heavy Ion Research have now ...

Antarctic "Telescopes" Look for Cosmic Rays

Feb 08, 2005

Working in the harsh conditions of Antarctica, Maryland researchers are creating new ways of detecting cosmic rays, high energy particles that bombard the Earth from beyond our solar system.

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.