Protective garment

Nov 29, 2006

Military personnel, chemical workers, and others could benefit from a new synthetic rubber material tailored with liquid crystals. The material might be used to make body suits to protect chemical-industry employees from skin exposure to toxic vapors and aerosols, as well as providing protection for military personnel and civilians in the event of a chemical-weapons attack. The new composite is lightweight and breathable, but still blocks the passage of toxic chemicals, reducing the risk of heat exhaustion in anyone wearing it.

Writing in issue 24 of Advanced Materials, Douglas Gin of the University of Colorado, Brian Elliott at TDA Research Inc. (Wheat Ridge, Colorado), and colleagues, explain that effective personal protection against exposure to toxic vapors is a major concern in industry and in defense.

At present, the only certain way to protect people from all chemical vapors to which they might be exposed is to use a hermetically sealed body suit and fully enclosed breathing apparatus. An alternative used by the military is a heavy overgarment lined with activated carbon that can adsorb vapors for a limited time. Such equipment, while safeguarding personnel, is cumbersome, costly, and unwieldy to use in an emergency, as well as coming with health risks if used in hot environments.

To solve this problem, the researchers have turned to a highly effective garment material—butyl rubber (BR)—used in protective clothing, and have adapted it to a modern application. Butyl rubber, or more formally, linear poly(methylpropene-co-2-methyl-1,3-butadiene) can be chemically modified so that the polymer strands become crosslinked to one another. These crosslinks make synthetic rubber resistant to many corrosive chemicals and give it very low permeability, so that most toxic chemical agents, whether vapor or liquid, cannot penetrate.

However, it is this same lack of permeability that is a major drawback to using butyl rubber. Water vapor is also prevented from passing through crosslinked butyl rubber, so that under even moderate workload individuals wearing a synthetic rubber protective garment can become very uncomfortable and in extreme cases suffer heat stress, heat stroke, and even death from overheating. Because of these problems, most of the world's military currently rely on the heavier overgarments lined with activated carbon - but would prefer a lighter option that could be used for longer and is more easier to wear.

The ideal protective garment should be lightweight and selectively block toxic vapors, but be “breathable”, allowing water vapor to pass outward, thereby maintaining personal comfort and safety. Gin, Elliott, and their colleagues have now developed just such a material based on modified butyl rubber. The material is breathable but also rejects chemical agents.

To make their breathable rubber, the researchers originally blended the synthetic rubber with a liquid-crystal molecule that could also be crosslinked like the rubber itself. During preparation of the breathable rubber, the liquid crystals organize themselves into cylinders around water molecules in the reaction mixture. This causes tiny water-filled nanopores just 1.2 nanometers in diameter to form. Only the smallest of molecules can pass through these pores, including water. Many toxic molecules, nerve agents, and other chemicals are too big to enter the pores. Moreover, the pores are water-loving, or hydrophilic, whereas most chemical warfare agents and many toxic compounds are hydrophobic, or water repellent, so even if they could fit, they would be repelled by the pores.

The team carried out initial tests with their breathable liquid crystal rubber and found it to have a very high selectivity for water vapor compared to so-called “half mustard” gas, 2-chloroethyl ethyl sulfide (CEES). However, the rate of water vapor transport in the original test material was lower than that widely viewed as the target valued needed by the military. Also, penetration by CEES vapor was slightly above that measured for pure crosslinked butyl rubber.

In order to improve on this prototype, the researchers tried a different liquid crystal in their new composite. This second-generation material does not contain isolated water pores spread across its surface but instead has a manifold network of tiny conduits. The new material is more than ten times as effective at transporting water vapor compared to the original material. It also blocks the passage of CEES much more effectively than pure butyl rubber.

The team is now refining the material to make it thinner but just as effective. They are also testing how effective it is at keeping out phosphorus ester-based chemical-warfare agents.

While a breathable rubber is likely to appeal to the military and emergency services, the researchers might also find a secondary market for such a material. “It may be possible to use these nanoporous liquid crystal–polymer materials for performing molecular-level separations of liquid mixtures, or even removing toxic molecules and dissolved salts from contaminated water or seawater,” the researchers say. Gin, Elliott, and colleagues are already looking into these possibilities.

Source: Advanced Materials

Explore further: Nanoparticles give up forensic secrets

add to favorites email to friend print save as pdf

Related Stories

Plant-based building materials may boost energy savings

Sep 24, 2014

Scientists worldwide are turning to plants as a resource for biodegradable, renewable and environmentally friendly products and materials that can reduce landfill waste, help the environment and cause little ...

Rubber technology important in reducing CO2 emissions

Sep 23, 2014

Despite numerous measures taken by manufacturers, the worldwide level of CO2 car emissions is still increasing at an alarming rate. The automotive sector is working hard to develop lightweight constructions, ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Patent solution in a canning jar

Aug 12, 2014

From shopping bags to shampoo bottles to plastic watering cans – many everyday objects both large and small might look very different if it hadn't been for the invention of chemist and Max Planck researcher ...

Recommended for you

Creating nanostructures using simple stamps

3 hours ago

Nanostructures of virtually any possible shape can now be made using a combination of techniques developed by the MESA+ Institute for Nanotechnology of the University of Twente. Especially the unique properties ...

New nanomaterial introduced into electrical machines

4 hours ago

Lappeenranta University of Technology in Finland has constructed the world's first prototype electrical motor using carbon nanotube yarn in the motor windings. The new technology may significantly enhance the performance.

Nanoparticles give up forensic secrets

16 hours ago

A group of researchers from Switzerland has thrown light on the precise mechanisms responsible for the impressive ability of nanoparticles to detect fingermarks left at crime scenes.

User comments : 0