Parental genes do what's best for baby

Nov 29, 2006

A molecular "battle of the sexes" long considered the major driving force in a baby's development is being challenged by a new genetic theory of parental teamwork.

Biologists at The University of Manchester say the prevailing view that maternal and paternal genes compete for supremacy in their unborn offspring fails to answer some important questions relating to child development.

In fact, rather than a parental power struggle, the researchers suggest that certain offspring characteristics can only be explained by their theory of genetic cooperation.

“When we are conceived we inherit two copies of every gene – one set from our mother and one from our father,” explained Dr Jason Wolf, who led the research in Manchester’s Faculty of Life Sciences.

“But some genes – through a process called genomic imprinting – only use one parent’s copy; the spare copy from the other parent is silenced by a chemical stamp.”

The concept of imprinting has long puzzled scientists as it appears to undermine the natural benefits organisms gain from inheriting two sets of genes.

If one copy of a gene is damaged, for instance, then the second copy can compensate; imprinted genes lose this safeguard and so are more susceptible to disease. Errors in imprinting have also been linked to cancer and other genetic disorders.

Scientists have argued that the reason some genes only use or ‘express’ one copy is due to a conflict between paternal and maternal interests.

In the natural world, for example, males would hope to produce large offspring to give them the best chance of survival and carry on their gene line. But large offspring require greater maternal investment, so females will try to impose their genetic stamp so that smaller young are born.

“The idea that imprinting evolves because of conflict between males and females over maternal investment in their offspring has become a generally accepted truth that has remained largely unchallenged,” said Dr Wolf.

“But we have shown that selection for positive interactions between mothers and their offspring, rather than conflict, can produce the sorts of imprinting patterns we see for a lot of genes.

“For example, during placental development the maternal and offspring genomes have to work together to produce a functional placenta. By expressing the genes they get from their mothers, the offspring are more likely to show an adaptive fit with their mother’s genes; they complement each other and so work better together to produce the placenta.”

Source: University of Manchester

Explore further: No-take marine reserves a no-win for seahorses

add to favorites email to friend print save as pdf

Related Stories

Ignorance is sometimes bliss

Oct 23, 2013

A range of examples suggests a lack of information about their fellows can favor cooperation and prevent conflict among animals—and even among genes.

Dad's genes build placentas, study shows

Aug 12, 2013

Though placentas support the fetus and mother, it turns out that the organ grows according to blueprints from dad, says new Cornell research. The study, published in the Proceedings of the National Academy of ...

Human hybrids: a closer look at the theory and evidence

Jul 25, 2013

There was considerable fallout, both positive and negative, from our first story covering the radical pig-chimp hybrid theory put forth by Dr. Eugene McCarthy, a geneticist who's proposing that humans first arose ...

Maternal gene causes more piglets to be born

Mar 26, 2012

A sow gives birth to more piglets if the DIO3 gene from its mother is expressed instead of the same gene inherited from its father. This is shown during research conducted by the Animal Breeding and Genomics Centre in Wageningen ...

Recommended for you

Sharks off the menu and on the tourist trail in Palau

19 minutes ago

In many places swimmers might prefer to avoid sharks, but wetsuit-clad tourists in Palau clamour to dive among the predators thanks to a pioneering conservation initiative that has made them one of the country's ...

DNA may have had humble beginnings as nutrient carrier

18 hours ago

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

18 hours ago

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

No-take marine reserves a no-win for seahorses

19 hours ago

A UTS study on how seahorses are faring in no-take marine protected areas (MPAs) in NSW has revealed that where finishing is prohibited, seahorses aren't doing as well.

User comments : 0