Vitamin E crucial to plants' survival of the cold, study finds

Nov 27, 2006

Vitamin E does not play the same role in plants as it does in animals and humans, scientists from the University of Toronto and Michigan State University have found. Rather than protect fats in membranes from certain kinds of stress, Vitamin E instead fulfils a crucial role in plants’ nutrient transport system in cold temperatures. The surprising finding, which has the potential to be applied in the development of biofuels and cold-tolerance in crops, was reported in a recent cover story of The Plant Cell.

Vitamin E is an essential nutrient to all mammals and its role has been widely studied in animals, but little research had been done on how Vitamin E functions in plants, says Tammy Sage of U of T’s department of ecology and evolutionary biology. In animal systems, Vitamin E acts as an anti-oxidant that helps prevent lipids in membranes from stress. Sage and her colleagues decided to investigate the long-standing, but still largely untested hypothesis that the vitamin would function similarly in plants. “That wasn’t what happened at all,” says Sage. “The result was quite unexpected.”

Researchers subjected a Vitamin E-deficient mutant of an Arabidopsis plant to stresses like high salinity, intense light and drought and measured the results. A lack of Vitamin E did not harm the lipid oxidation or photosynthesis processes but, under non-freezing cold conditions, did cause particular cells responsible for food and water transportation to accumulate a carbohydrate called callose in their cell walls. The increase of callose in these cells inhibited regular food movement from the leaves to the rest of the plant and caused a buildup of sugars and starch within the leaves.”

“Without this food movement, the plant produces fewer seeds,” explains Sage. “We realized Vitamin E is essential for plants to be able to continue to reproduce well in lower temperatures.”

There may be practical applications to this discovery, Sage says. The information could be useful to researchers seeking ways to develop species of plants resistant to cold temperatures. And researchers involved in alternative energy production may take interest.

“There is a lot of current interest in extracting cellulose from plant cell walls to produce biofuels,” explains Sage, “but it takes a large amount of energy to break cellulose down into the carbohydrates that are needed. If you had a plant that had already accumulated an abundance of sugars and starch in the leaves, then you wouldn’t have to worry as much about breaking down the cellulose to make biofuels.”

Source: University of Toronto

Explore further: Japan lawmakers demand continued whaling

add to favorites email to friend print save as pdf

Related Stories

Meteorites yield clues to Martian early atmosphere

14 minutes ago

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Japan lawmakers demand continued whaling

3 minutes ago

Japanese lawmakers on Wednesday demanded the government redesign its "research" whaling programme to circumvent an international court ruling that described the programme as a commercial hunt dressed up as ...

Progress in the fight against quantum dissipation

23 minutes ago

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Performance measures for CEOs vary greatly, study finds

28 minutes ago

As companies file their annual proxy statements with the U.S. Securities and Exchange Commission (SEC) this spring, a new study by Rice University and Cornell University shows just how S&P 500 companies have ...

Recommended for you

Chimpanzees prefer firm, stable beds

3 hours ago

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

4 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

6 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.