Molecules that suck

Nov 21, 2005

The interaction between the tip of a scanning tunnelling microscope (STM) and atoms or molecules bound to a surface can be used to construct impressive nanostructures, such as the 'quantum corral'.

As reported in the December issue of Nature Materials (DOI: 10.1038/nmat1529), researchers combine STM manipulation techniques with the ability of a molecule to assemble nanostructures by sucking up and depositing atoms where needed.

The invention of the STM in the early 1980s was the catalyst of the nanoscale technological revolution, not only for imaging but also for interacting with matter at the atomic scale. Since then, progress in manipulation techniques has shown that the interaction of molecules with the surface of a metal can induce surface reconstruction. Francesca Moresco and colleagues now go a step further by moving and organizing metal atoms on a substrate with the help of a well-designed six-leg organic molecule.

The copper atoms trapped under the organic molecule can be further rearranged by bringing the whole system and its copper load to a specific position on the surface where the metal atoms can subsequently be released.

The authors believe that this versatile assembling approach should facilitate the interconnection of molecular devices to well-defined atomic-scale metallic electrodes on insulating surfaces, where STM has so far proved unsuccessful.

Source: Nature

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

Graphene growth on silver

Jan 14, 2014

Users from Northwestern University, working with the Center for Nanoscale Materials EMMD Group at Argonne, have demonstrated the first growth of graphene on a silver substrate.

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...