Materials Regain Properties Previously Thought to Disappear under Pressure

Nov 21, 2005

University of Arkansas physicists working with researchers in France have shown that a group of materials used in military sonar and medical ultrasound regain their unique properties at high pressures, overturning a belief held for more than 30 years that these properties disappear at high pressures.

"There is different kind of ferroelectricity that appears under high pressures," said Igor Kornev, research professor of physics in the Fulbright College of Arts and Sciences. Kornev and Laurent Bellaiche, associate professor of physics in Fulbright, together with French researchers Pierre Bouvier of Grenoble, Pierre-Eymeric Janolin and Brahim Dkhil of Paris and Jens Kreisel of Grenoble, reported their findings in the Nov. 4 issue of Physical Review Letters.

Kornev and Bellaiche study ferroelectric materials, which possess spontaneous electrical dipoles, or charge separations. The electrical dipoles allow them to create the images seen in medical ultrasounds and naval sonar by converting mechanical energy into electrical energy. These materials also are used to convert signals to sound in cell phones and other audio devices.

The researchers use computational models to determine what will happen to such materials at different temperatures or pressures.

At a certain high pressure, the ferroelectric properties of these materials, called perovskites, were commonly thought to disappear. Researchers believed that this critical pressure caused the atoms to get "stuck," which made it impossible for them to convert energy, meaning that the effect would not reappear even at higher pressures.

Kornev and Bellaiche decided to use a computer model to track the predicted behavior of a system containing lead titanium oxide at pressures higher than those at which the material typically loses its ferroelectric properties. When they performed the computer simulations, they found to their surprise that after a certain higher pressure threshold, the material began to exhibit ferroelectric properties once again.

"It was an unexpected result," Kornev said. Puzzled by these results, the researchers collaborated with physicists at laboratories in Grenoble and Paris, France, to conduct laboratory experiments using the lead titanium oxide under high pressures. They produced the same result: After a certain pressure point was reached, the ferroelectric properties of the material returned.

However, the ferroelectricity stems from different sources at the different pressures, Kornev said.

At low pressures, the lead ions move away from their ideal positions, causing a dipole, or charge separation. However, this dipole gradually disappears as pressure begins to rise. At high pressures, the electron cloud associated with the titanium and the oxygen appears to be responsible for the reappearance of the dipole and the ferroelectric properties, Kornev said.

"In principle, it means that it is possible to use these materials at higher pressures than previously thought," Kornev said.

Source: University of Arkansas

Explore further: Precision gas sensor could fit on a chip

add to favorites email to friend print save as pdf

Related Stories

Flexible nanosensors for wearable devices

Feb 25, 2015

A new method developed at the Institute of Optoelectronics Systems and Microtechnology (ISOM) from the Universidad Politécnica de Madrid (UPM) will enable the fabrication of optical nanosensors capable of sticking on uneven ...

Embryos of stars

Feb 16, 2015

Stars like the Sun begin their lives as cold, dense cores of dust and gas that gradually collapse under the influence of gravity until nuclear fusion is ignited. Exactly how the critical collapse process ...

What is Hooke's Law?

Feb 16, 2015

The spring is a marvel of human engineering and creativity. For one, it comes in so many varieties – the compression spring, the extension spring, the torsion spring, the coil spring, etc. – all of which ...

Recommended for you

Precision gas sensor could fit on a chip

19 minutes ago

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

1 hour ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

13 hours ago

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

Top-precision optical atomic clock starts ticking

16 hours ago

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.