Materials Regain Properties Previously Thought to Disappear under Pressure

Nov 21, 2005

University of Arkansas physicists working with researchers in France have shown that a group of materials used in military sonar and medical ultrasound regain their unique properties at high pressures, overturning a belief held for more than 30 years that these properties disappear at high pressures.

"There is different kind of ferroelectricity that appears under high pressures," said Igor Kornev, research professor of physics in the Fulbright College of Arts and Sciences. Kornev and Laurent Bellaiche, associate professor of physics in Fulbright, together with French researchers Pierre Bouvier of Grenoble, Pierre-Eymeric Janolin and Brahim Dkhil of Paris and Jens Kreisel of Grenoble, reported their findings in the Nov. 4 issue of Physical Review Letters.

Kornev and Bellaiche study ferroelectric materials, which possess spontaneous electrical dipoles, or charge separations. The electrical dipoles allow them to create the images seen in medical ultrasounds and naval sonar by converting mechanical energy into electrical energy. These materials also are used to convert signals to sound in cell phones and other audio devices.

The researchers use computational models to determine what will happen to such materials at different temperatures or pressures.

At a certain high pressure, the ferroelectric properties of these materials, called perovskites, were commonly thought to disappear. Researchers believed that this critical pressure caused the atoms to get "stuck," which made it impossible for them to convert energy, meaning that the effect would not reappear even at higher pressures.

Kornev and Bellaiche decided to use a computer model to track the predicted behavior of a system containing lead titanium oxide at pressures higher than those at which the material typically loses its ferroelectric properties. When they performed the computer simulations, they found to their surprise that after a certain higher pressure threshold, the material began to exhibit ferroelectric properties once again.

"It was an unexpected result," Kornev said. Puzzled by these results, the researchers collaborated with physicists at laboratories in Grenoble and Paris, France, to conduct laboratory experiments using the lead titanium oxide under high pressures. They produced the same result: After a certain pressure point was reached, the ferroelectric properties of the material returned.

However, the ferroelectricity stems from different sources at the different pressures, Kornev said.

At low pressures, the lead ions move away from their ideal positions, causing a dipole, or charge separation. However, this dipole gradually disappears as pressure begins to rise. At high pressures, the electron cloud associated with the titanium and the oxygen appears to be responsible for the reappearance of the dipole and the ferroelectric properties, Kornev said.

"In principle, it means that it is possible to use these materials at higher pressures than previously thought," Kornev said.

Source: University of Arkansas

Explore further: Neutron tomography technique reveals phase fractions of crystalline materials in 3-dimensions

add to favorites email to friend print save as pdf

Related Stories

Peering into giant planets from in and out of this world

Jul 17, 2014

Lawrence Livermore scientists for the first time have experimentally re-created the conditions that exist deep inside giant planets, such as Jupiter, Uranus and many of the planets recently discovered outside ...

Chemists eye improved thin films with metal substitution

Jul 21, 2014

The yield so far is small, but chemists at the University of Oregon have developed a low-energy, solution-based mineral substitution process to make a precursor to transparent thin films that could find use ...

New tool, savings for manufacturing hard materials

Jul 17, 2014

"Machining," in particular the process of cutting hard, brittle materials during manufacturing, can be difficult, often because the cutting tool, typically made of single crystal diamond, the hardest material ...

Recommended for you

MRI for a quantum simulation

3 hours ago

Magnetic resonance imaging (MRI), which is the medical application of nuclear magnetic resonance spectroscopy, is a powerful diagnostic tool. MRI works by resonantly exciting hydrogen atoms and measuring ...

50-foot-wide Muon g-2 electromagnet installed at Fermilab

4 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

User comments : 0