30 million years ahead - how the butterfly beat technology to it

Nov 19, 2005
Peter Vukusic (University of Exeter)

Butterflies have evolved a unique mechanism to create a dazzling display of colour which puts physicists in the shade. Modern light emitting devices have traditionally been inefficient because most of the light created can't escape, but now in a paper published in Science, University of Exeter scientists have discovered the butterfly has been doing what physics couldn't, for more than 30 million years.

Image: Peter Vukusic. (Copyright: University of Exeter)

In order for LEDs (light emitting diodes) to function efficiently physicists have spent years analysing their design to come up with features which help to maximise the amount of light released. These include a specialised mirror to reflect light and micro holes which stop light from being trapped inside the device or from spreading sideways.

But it seems anything we can do nature can do better. When Dr Pete Vukusic studied African Swallowtail butterflies he found the creatures had evolved to include exactly these adaptations. This butterfly emits blue-green light, which it uses for signalling, using a fluorescent pigment on its wings.

Dr Pete Vukusic, of the School of Physics said: "It's amazing that butterflies have evolved such sophisticated design features which can so exquisitely manipulate light and colour. Nature's design and engineering is truly inspirational. Pigment on the butterflies' wings absorbs ultra-violet light which is then re-emitted, using fluorescence, as brilliant blue-green light. This adds to the colour intensity of the wing. Much of this light would be lost, resulting in a much duller effect, but the pigment is located in a region of the wing which has evenly spaced micro-holes through it."

He continues: "The function of the micro-scales is identical to those in the LED; they prevent the fluorescent colour from being trapped inside the structure and from being emitted sideways. The scales on the wing also have a specialised mirror underneath them, again very similar in design to that in the LED. This mirror upwardly reflects all the fluorescent light that gets emitted down towards it. The result is a very efficient system for fluorescent emission that gives the butterfly significant control of the direction in which the light is emitted."

Source: University of Exeter

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

New nanodevice to improve cancer treatment monitoring

Oct 27, 2014

In less than a minute, a miniature device developed at the University of Montreal can measure a patient's blood for methotrexate, a commonly used but potentially toxic cancer drug. Just as accurate and ten ...

An unlikely use for diamonds

Oct 27, 2014

Tiny diamonds are providing scientists with new possibilities for accurate measurements of processes inside living cells with potential to improve drug delivery and cancer therapeutics.

Recommended for you

New filter could advance terahertz data transmission

1 hour ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

2 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

3 hours ago

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

4 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

16 hours ago

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.