Robot Discovers Itself, Adapts to Injury

Nov 16, 2006
Robot Discovers Itself and Adapts to Injury
Graduate student Viktor Zykov, former student Josh Bongard, now a professor at the University of Vermont, and Hod Lipson, Cornell assistant professor of mechanical and aerospace engineering, watch as a starfish-like robot pulls itself forward, using a gait it developed for itself. the robot's ability to figure out how it is put together, and from that to learn to walk, enables it to adapt and find a new gait when it is damaged. Credit: Lindsay France/Cornell University

Nothing can possibly go wrong ... go wrong ... go wrong ... The truth behind the old joke is that most robots are programmed with a fairly rigid "model" of what they and the world around them are like. If a robot is damaged or its environment changes unexpectedly, it can't adapt.

So Cornell researchers have built a robot that works out its own model of itself and can revise the model to adapt to injury. First, it teaches itself to walk. Then, when damaged, it teaches itself to limp.

Although the test robot is a simple four-legged device, the researchers say the underlying algorithm could be used to build more complex robots that can deal with uncertain situations, like space exploration, and may help in understanding human and animal behavior.

The research, reported in the latest issue (Nov. 17) of the journal Science, is by Josh Bongard, a former Cornell postdoctoral researcher now on the faculty at the University of Vermont, Cornell graduate student Viktor Zykov and Hod Lipson, Cornell assistant professor of mechanical and aerospace engineering.

Instead of giving the robot a rigid set of instructions, the researchers let it discover its own nature and work out how to control itself, a process that seems to resemble the way human and animal babies discover and manipulate their bodies. The ability to build this "self-model" is what makes it able to adapt to injury.

"Most robots have a fixed model laboriously designed by human engineers," Lipson explained. "We showed, for the first time, how the model can emerge within the robot. It makes robots adaptive at a new level, because they can be given a task without requiring a model. It opens the door to a new level of machine cognition and sheds light on the age-old question of machine consciousness, which is all about internal models."

The robot, which looks like a four-armed starfish, starts out knowing only what its parts are, not how they are arranged or how to use them to fulfill its prime directive to move forward. To find out, it applies what amounts to the scientific method: theory followed by experiment followed by refined theory.

It begins by building a series of computer models of how its parts might be arranged, at first just putting them together in random arrangements. Then it develops commands it might send to its motors to test the models. A key step, the researchers said, is that it selects the commands most likely to produce different results depending on which model is correct. It executes the commands and revises its models based on the results. It repeats this cycle 15 times, then attempts to move forward.

"The machine does not have a single model of itself -- it has many, simultaneous, competing, different, candidate models. The models compete over which can best explain the past experiences of the robot," Lipson said.

The result is usually an ungainly but functional gait; the most effective so far is a sort of inchworm motion in which the robot alternately moves its legs and body forward.

Once the robot reaches that point, the experimenters remove part of one leg. When the robot can't move forward, it again builds and tests 16 simulations to develop a new gait.

The researchers limited the robot to 16 test cycles with space exploration in mind. "You don't want a robot on Mars thrashing around in the sand too much and possibly causing more damage," Bongard explained.

The underlying algorithm, the researchers said, could be applied to much more complex machines and also could allow robots to adapt to changes in environment and repair themselves by replacing parts. The work also could have other applications in computing and could lead to better understanding of animal cognition. In a way, Bongard said, the robot is "conscious" on a primitive level, because it thinks to itself, "What would happen if I do this?"

"Whether humans or animals are conscious in a similar way -- do we also think in terms of a self-image, and rehearse actions in our head before trying them out -- is still an open question," he said.

Source: Cornell University

Explore further: C2D2 fighting corrosion

add to favorites email to friend print save as pdf

Related Stories

Hitchhiking robot charms its way across Canada

Aug 15, 2014

He has dipped his boots in Lake Superior, crashed a wedding and attended an Aboriginal powwow. A talking, bucket-bodied robot has enthralled Canadians since it departed from Halifax last month on a hitchhiking ...

To bolster lithium battery life, add a little salt

Aug 14, 2014

(Phys.org) —Cornell chemical engineers have achieved a breakthrough in the race to achieve safer, longer-lasting batteries to power the world's automobiles, cell phones, computers and autonomous robots.

Geckos use toe hairs to turn stickiness on/off

Aug 12, 2014

Researchers at Oregon State University have developed a model that explains how geckos, as well as spiders and some insects, can run up and down walls, cling to ceilings, and seemingly defy gravity with such ...

Recommended for you

C2D2 fighting corrosion

19 hours ago

Bridges become an infrastructure problem as they get older, as de-icing salt and carbon dioxide gradually destroy the reinforced concrete. A new robot can now check the condition of these structures, even ...

Meet the "swarmies"- robotics' answer to bugs

Aug 22, 2014

(Phys.org) —A small band of NASA engineers and interns is about to begin testing a group of robots and related software that will show whether it's possible for autonomous machines to scurry about an alien ...

Hitchhiking robot reaches journey's end in Canada

Aug 21, 2014

A chatty robot with an LED-lit smiley face sent hitchhiking across Canada this summer as part of a social experiment reached its final destination Thursday after several thousand kilometers on the road.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

HackerMike
not rated yet Aug 04, 2009
This is a concept that I've thought about and wanted to develop: a neural net that learned to maximize velocity. It would need to adapt to whatever appendages it had available to it. The problem with extending this idea is it's easy to define walking = maximizing velocity, but what about more elaborate actions? What rule do you apply for it to, say, avoid bullets or move when a gun is pointed at it? Higher levels of programming will be needed. Ideally, heirarchical neural nets must be developed:
gun detection
human detection
human-using-gun detection
walking (needed to get out of the way if all prior conditions exist -- as developed)

So, these various nets must be specifically taught and the rule to walk when all condition are met (so it can get out of the way). Their adaptive walking robot is great, but doesn't come close to building multiple, disparate nets for the robot to truly evolve its thinking.

Herein lies the problem!