Math model could aid study of collagen ailments

Nov 14, 2006

An MIT researcher's mathematical model explains for the first time the distinctive structure of collagen, a material key to healthy human bone, muscles and other tissues. The new model shows collagen's structure from the atomic to the tissue scale.

An improved understanding of nature's most abundant protein could aid the search for cures to such ailments as osteoporosis, joint hyperextensibility and scurvy, all recognized as arising from diseased collagen. It could also guide engineers' development of synthetic versions of the protein, which in its healthy state is several times stronger than steel per molecule.

Biological experiments in the past have shown that collagen's universal design consists of molecules staggered lengthwise, arranged like fibers in a steel cable. Each tiny tropocollagen molecule--the smallest collagen building block--is around 300 nanometers long and only 1.5 nanometers thick. But why these ropy strands of amino acids--the molecular building blocks of proteins--associate to form tropocollagen molecules consistently at the same length has been unexplained until now.

The molecular model of collagen developed by Markus Buehler, an assistant professor in the Department of Civil and Environmental Engineering, started on the atomic scale. Buehler then combined elements of quantum mechanics and molecular dynamics to scale his model up and show precisely which length and arrangement of molecules were best for sustaining large weights pulling in opposite directions, a process known as tensile loading.

Buehler discovered that the ideal length of tropocollagen molecules was indeed close to 300 nanometers. His work has shown that the characteristic nanopatterned structure of collagen is responsible for its high extensibility and strength. "This is the first time a predictive, molecular model was used to explain the design features that experiments have shown for decades without understanding the rationale behind them," he explained.

"The response of materials to tensile loading has been studied in materials science for computer chips, cars and buildings, but is still poorly understood for biological materials. What we are doing is looking at biological systems on a molecular level, the same way we would examine glass or metal," said Buehler. "This represents a new way of thinking about biological matter, and it may hold the key to engineering biological systems as we design man-made devices today."

The next step in the research will be to delve deeper into the structure of collagen. "We've developed a reference point for healthy collagen. This enables us now to study how diseases or genetic mutations impact the structure," said Buehler. Learning more about the structural differences between diseased and healthy collagen could help in the development of biomimetic materials.

Buehler is optimistic about the future. "Understanding the mechanical properties of protein materials--in particular their deformation and fracture--is a frontier in materials science. We're trying to figure out how nature creates better materials than we can," he said.

Source: Massachusetts Institute of Technology

Explore further: Largest genetic survey to date shows major success of giant panda breeding programs

add to favorites email to friend print save as pdf

Related Stories

Materials scientists turn to collagen

Jun 05, 2014

(Phys.org) —Miniature scaffolds made from collagen – the 'glue' that holds our bodies together – are being used to heal damaged joints, and could be used to develop new cancer therapies or help repair ...

3-D printing artificial bone

Jun 17, 2013

Researchers working to design new materials that are durable, lightweight and environmentally sustainable are increasingly looking to natural composites, such as bone, for inspiration: Bone is strong and ...

Discovery helps show how breast cancer spreads

May 05, 2013

Researchers at Washington University School of Medicine in St. Louis have discovered why breast cancer patients with dense breasts are more likely than others to develop aggressive tumors that spread. The ...

Researchers unravel mysteries of spider silk

Jan 27, 2013

(Phys.org)—Scientists at Arizona State University are celebrating their recent success on the path to understanding what makes the fiber that spiders spin – weight for weight - at least five times as ...

Recommended for you

How honey bees stay cool

9 hours ago

Honey bees, especially the young, are highly sensitive to temperature and to protect developing bees, adults work together to maintain temperatures within a narrow range. Recently published research led by ...

User comments : 0