'Tornadoes' are transferred from light to sodium atoms

Nov 09, 2006
'Tornadoes' are transferred from light to sodium atoms
Quantum weirdness: Pictures of a BEC 'cloud' of sodium atoms in the NIST experiment to transfer rotational energy to a quantum system show the cloud (a) rotating in a donut-shaped vortex, and interfering with itself as the cloud (b) simultaneously rotates in opposite directions, and (c) simultaneously rotates and stands still. Rotational energy is transferred in quantized amounts. False-color images show (d) one and (e) two units of rotational motion. Credit: NIST

For the first time, tornado-like rotational motions have been transferred from light to atoms in a controlled way at the National Institute of Standards and Technology. The new quantum physics technique can be used to manipulate Bose-Einstein condensates (BECs), a state of matter of worldwide research interest, and possibly used in quantum information systems, an emerging computing and communications technology of potentially great power.

As reported in the Oct. 27 issue of Physical Review Letters, the research team transferred orbital angular momentum--essentially the same motion as air molecules in a tornado or a planet revolving around a star--from laser light to sodium atoms.

The NIST experiment completes the scientific toolkit for complete control of the state of an atom, which now includes the internal, translational, and rotational behavior. The rotational motion of light previously has been used to rotate particles, but this new work marks the first time the motion has been transferred to atoms in discrete, measurable units, or quanta. Other researchers, as well as the NIST group, previously have transferred linear momentum and spin angular momentum (an internal magnetic state) from light to atoms.

The experiments were performed with more than a million sodium atoms confined in a magnetic trap. The atoms were chilled to near absolute zero and in identical quantum states, the condition known as a Bose-Einstein condensate in which they behave like a single "super-atom" with a jelly-like consistency. The BEC was illuminated from opposite sides by two laser beams, one of them with a rotating doughnut shape.

Each atom absorbed one photon (the fundamental particle of light) from the doughnut laser beam and emitted one photon in the path of the other laser beam, picking up the difference in orbital angular momentum between the two photons. The interaction of the two opposing lasers created a corkscrew-like interference pattern, inducing the BEC to rotate--picture a rotating doughnut, or a vortex similar to a hurricane.

The researchers demonstrated control over the process by inducing the cloud of atoms to simultaneously rotate and stand still, or to rotate simultaneously in opposite directions with varying amounts of momentum--a mind-bending peculiarity of quantum physics known as superposition.

Citation: M.F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W.D. Phillips. 2006. Quantized rotation of atoms from photons with orbital angular momentum. Physical Review Letters. Oct. 27.

Source: NIST

Explore further: Heat makes electrons spin in magnetic superconductors

Related Stories

Detailed structure of human ribosome revealed

Apr 24, 2015

A team at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC - CNRS/Université de Strasbourg/Inserm) has evidenced, at the atomic scale, the three-dimensional structure of the complete ...

Smaller and cheaper particle accelerators?

Apr 22, 2015

Traditionally, particle accelerators have relied on electric fields generated by radio waves to drive electrons and other particles close to the speed of light. But in radio-frequency machines there is an ...

Electron trapping harnessed to make light sensors

Apr 21, 2015

Traps. Whether you're squaring off against the Empire or trying to wring electricity out of sunlight, they're almost never a good thing. But sometimes you can turn that trap to your advantage. A team from ...

How many gold atoms make gold metal?

Apr 10, 2015

Researchers at the Nanoscience Center at the University of Jyväskylä, Finland, have shown that dramatic changes in the electronic properties of nanometre-sized chunks of gold occur in well-defined size ...

Recommended for you

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

ICARUS neutrino experiment to move to Fermilab

Apr 23, 2015

A group of scientists led by Nobel laureate Carlo Rubbia will transport the world's largest liquid-argon neutrino detector across the Atlantic Ocean from CERN to its new home at the US Department of Energy's ...

National security on the move with high energy physics

Apr 23, 2015

Scientists are developing a portable technology that will safely and quickly detect nuclear material hidden within large objects such as shipping cargo containers or sealed waste drums. The researchers, led ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.