FSU's Magnet Lab Researchers Deciphering Flu Virus

Nov 09, 2006
FSU's Magnet Lab Researchers Deciphering Flu Virus
Influenza Virus. Credit: National High Magnetic Field Laboratory, Florida State University, Tallahassee, Fla.

As the Northern Hemisphere braces for another flu season, researchers at Florida State University's National High Magnetic Field Laboratory are making strides toward better understanding the mechanics of the virus that causes it - a virus that kills between one-quarter and one-half million people each year.

Tim Cross, director of the lab's Nuclear Magnetic Resonance (NMR) program, and collaborators from Brigham Young University are trying to understand the minute parts of the highly virulent Influenza Type A virus. To do that, they are using all of the magnet lab's NMR resources, including its 15-ton, 900-megahertz magnet, to produce a detailed picture of the virus's skin.

"Using the magnet helps us build a blueprint for a virus's mechanics of survival," said Cross, who also is a professor of chemistry and biochemistry at FSU. "The more detailed the blueprint, the better our chances of developing drugs capable of destroying it."

The only magnet of its kind in the world, the "900" is critical to the project's process. Otherwise, an image this complicated would be impossible to obtain.

Cross and David Busath, a biophysicist at Brigham Young University, recently discovered key components of the protein holes, or "channels," in the influenza viral skin. These components lead to unique chemical interactions that are thought to be important clues for understanding how the channels regulate whether the virus can distribute its genes into host cells and reproduce or not. The researchers' findings were published recently in the Proceedings of the National Academy of Sciences.

"This is a viral structure we haven't seen before," Busath said. "And yet,
through these tiny little doors, acids must come in and DNA must go out if the virus is to survive. The idea is to block the door to prevent the normal function required for the virus to replicate."

Once researchers understand how these channels are selective for acid, they can use that knowledge to fashion novel drugs capable of more effectively killing the virus.

The work is funded by a five-year, multimillion-dollar grant from the National Institutes of Health. Other authors on the Proceedings of the National Academy of Sciences paper are Jun Hu, Riqiang Fu, Katsuyuki Nishimura, Li Zhang and Huan-Xiang Zhou, all of FSU, and Viksita Vijayvergiya, a former postdoctoral fellow at BYU.

Source: Florida State University

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

US charges safari owners with illegal rhino hunts

5 minutes ago

Two South African men were charged Thursday by the US government with conspiracy to sell illegal rhinoceros hunts to American hunters, money laundering and secretly trafficking in rhino horns.

Close encounters: Comet siding spring seen next to mars

13 minutes ago

(Phys.org) —This composite NASA Hubble Space Telescope Image captures the positions of comet Siding Spring and Mars in a never-before-seen close passage of a comet by the Red Planet, which happened at 2:28 ...

Oculus Rift users to see Moon live through robot

23 minutes ago

A group from Carnegie Mellon wants to send a robot to the Moon to beam live pictures of the Moon to Oculus Rift headset users, reported technology reporter Jane Wakefield of the BBC. Andy the robot is intended ...

A blue Christmas for Amazon?

27 minutes ago

It might be a blue Christmas for Amazon. The world's largest retailer gave a disappointing forecast for the crucial holiday quarter. The company also reported a wider loss than analysts expected for the third ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0