Scientists Establish Connection Between Life Today and Ancient Changes in Ocean Chemistry

Nov 07, 2006

Researchers in computational biology and marine science have combined their diverse expertise and found that trace-metal usage by present-day organisms probably derives from major changes in ocean chemistry occurring over geological time scales.

Using protein structures for the first time in such a study, the research establishes one of the influences that geochemistry has had upon life.

The study, published in this week’s edition of the Proceedings of the National Academy of Sciences, sought to verify the theory that the rise in atmospheric oxygen some 2.3 billion years ago, and attendant shifts in ocean chemistry, led to changes in types of metals used with protein structures. Such changes are hypothesized to have led to the diversification and increased complexity of the life we see today.

Scientists Chris Dupont, Song Yang, Brian Palenik and Philip Bourne from the San Diego Supercomputer Center (SDSC), Scripps Institution of Oceanography, and the departments of chemistry and biochemistry and pharmacology at the University of California, San Diego (UCSD) analyzed the metal-binding characteristics of all known protein structures found in all kingdoms of life.

“Protein structures are ideal for this study,” Bourne said, “since they are much more conserved than protein sequences, traditionally used in such studies and, furthermore, metal binding can be inferred directly.”

Using data generated by Dupont and Yang, the group established that the three superkingdoms of life – Archaea, Bacteria and Eukarya -- all use metals differently. The differences reflect the availability of such metals in the ocean as the respective superkingdoms evolved.

The authors conclude that, “these conserved trends are proteomic imprints of changes in trace-metal bioavailability in the ancient ocean that highlight a major evolutionary shift in biological trace-metal usage.”

The changes in trace-metal availability are believed to have been brought about by the biologically caused rise in atmospheric oxygen some 2.3 billion years ago, highlighting the co-evolution of biology and geochemistry on a global scale.

“Here, a biological phenomenon, photosynthesis, changed the availability of trace metals in the oceans,” Dupont said, “resulting in a reciprocal change in biological evolution still observable today.”

The group notes that, “such studies linking the study of the earth sciences with that of the life sciences are limited and certainly no one has previously looked at this exciting area from the perspective of protein structure. We hope this will encourage others to undertake such interdisciplinary work.”

Source: University of California, San Diego

Explore further: Historic climate data provided by Mediterranean seabed sediments

add to favorites email to friend print save as pdf

Related Stories

Water in smog may reveal pollution sources

4 hours ago

The chemical signature of water vapor emitted by combustion sources such as vehicles and furnaces has been found in the smoggy winter inversions that often choke Salt Lake City. The discovery may give researchers ...

Recommended for you

Lightning plus volcanic ash make glass

Mar 03, 2015

In their open-access paper for Geology, Kimberly Genareau and colleagues propose, for the first time, a mechanism for the generation of glass spherules in geologic deposits through the occurrence of volcan ...

A new level of earthquake understanding

Mar 03, 2015

As everyone who lives in the San Francisco Bay Area knows, the Earth moves under our feet. But what about the stresses that cause earthquakes? How much is known about them? Until now, our understanding of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.