Nanoparticle Probes Light Up Cancer Cells

Nov 06, 2006

Cancer biologists are always on the lookout for new methods of studying the effects that drug therapy has on malignant cells. Now they have a new tool – silver nanoparticles, embedded in nanoscale silica spheres, which can create cellular markers with a wide variety of colors that can be observed under the microscope. These nanoscale tags could provide a boost to high-throughput drug screening efforts.

Reporting its work in the journal Analytical Chemistry, a research team headed by Yoon–Sik Lee, Ph.D., developed their nanoparticle probes to be used in conjunction with Raman spectroscopy, a technique well-suited to high-throughput assays. Though other groups have developed nanoparticle-based Raman probes, those that use single nanoparticles do not produce an easily readable optical signal.

The solution that Lee and his colleagues developed was to embed multiple silver nanodots and special dye molecules on the surface of silica spheres. The silver nanodots interact electronically with the dye molecules to produce a bright optical signal in a Raman spectrometer.

The researchers also developed methods for attaching cell-targeting molecules, such as antibodies, to the outside of the silica spheres without interfering with the optical properties of the final nanoparticle. In the work reported in this paper, the researchers used antibodies that target the HER2 receptor on breast cancer cells. Experiments showed that the targeted nanodots did bind to breast cancer cells with the HER2 receptor and were easily spotted using Raman spectroscopy.

This work is detailed is a paper titled, “Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting.” An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Scientists convert microbubbles to nanoparticles

Related Stories

A speedy test for bladder cancer

Jan 14, 2015

A fast and accurate urine test for bladder cancer developed by A*STAR researchers has the potential to replace the currently used invasive physical probe.

An unlikely use for diamonds

Oct 27, 2014

Tiny diamonds are providing scientists with new possibilities for accurate measurements of processes inside living cells with potential to improve drug delivery and cancer therapeutics.

New method for non-invasive prostate cancer screening

Sep 02, 2014

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

Recommended for you

Combining magnetism and light to fight cancer

12 minutes ago

By combining, in a liposome, magnetic nanoparticles and photosensitizers that are simultaneously and remotely activated by external physical stimuli (a magnetic field and light), scientists at the Laboratoire ...

Scientists convert microbubbles to nanoparticles

Mar 30, 2015

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

Designer's toolkit for dynamic DNA nanomachines

Mar 26, 2015

The latest DNA nanodevices created at the Technische Universitaet Muenchen (TUM)—including a robot with movable arms, a book that opens and closes, a switchable gear, and an actuator—may be intriguing ...

Simple method of binding pollutants in water

Mar 26, 2015

New types of membrane adsorbers remove unwanted particles from water and also, at the same time, dissolved substances such as the hormonally active bis-phenol A or toxic lead. To do this, researchers at the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.