Chronic Jet-Lag Conditions Hasten Death in Aged Mice

Nov 06, 2006

Researchers at the University of Virginia have found that aged mice undergoing weekly light-cycle shifts—similar to those that humans experience with jet lag or rotating shift work—experienced significantly higher death rates than did old mice kept on a normal daylight schedule over the same eight-week period.

The findings may not come as a great surprise to exhausted globetrotting business travellers, but the research nonetheless provides, in rather stark terms, new insight into how the disruption of circadian rhythms can impact well-being and physiology, and how those impacts might change with age.

The mouse study is reported by a group at U.Va. led by Gene Block, professor of biology, and Alec Davidson, research scientist, and appears in the November 7th issue of the journal Current Biology, published by Cell Press.

The researchers were led to examine a possible link between jet lag and mortality by something they had noticed in an earlier, unrelated study: A surprising fraction of old (but genetically altered) rats exposed to a six-hour advance in their light cycle died after the shift in schedule.

In the new work, the researchers examined the mortality link in earnest by looking at how young mice and old mice fared when subjected to two different types of light-cycle shifts. In one regimen, mice experienced a six-hour forward shift once a week, while in the other, mice experienced a six-hour backward shift. A “control” group of young and old mice did not experience any schedule shifts.

The researchers found that the young mice generally survived well under the various conditions. In contrast, the light-cycle shifts had a marked effect on the survivorship of the old mice. While 83% of old mice survived under the normal schedule, 68% survived under the backward-shift regimen and 47% survived under the forward-shift regimen.

Past work has also linked changes in light schedule with death in other animals and under different experimental circumstances, but the findings here indicate that there may be a differential effect of mortality depending on the direction of the schedule shift—forward or backward. Schedule “advancers” did more poorly in the present experiment than did “delayers.”

Notably, the researchers found that chronic stress—as measured by daily corticosterone levels—did not increase in the old mice experiencing the light-cycle shifts. The underlying cause of the increased mortality is not yet clear, but could involve sleep deprivation or immune-system disruption.

The body’s physiological reaction to time change may be complex. Past research has indicated that circadian clocks govern physiological rhythms in a great variety of tissues in the body, and that different aspects of the physiological clock can adjust to schedule changes at different rates. The researchers speculate that the internal lack of synchrony among different physiological oscillations may have serious health consequences that are exacerbated in aged animals.

Source: University of Virginia

Explore further: Diabetes drug found in freshwater is a potential cause of intersex fish

Related Stories

Clues to aging from long-lived lemurs

Mar 30, 2015

When Jonas the lemur died in January, just five months short of his thirtieth birthday, he was the oldest of his kind. A primate called a fat-tailed dwarf lemur, Jonas belonged to a long-lived clan. Dwarf ...

How strong is the gravity on Mars?

Dec 11, 2014

The planet Mars shares numerous characteristics with our own. Both planets have roughly the same amount of land surface area, sustained polar caps, and both have a similar tilt in their rotational axes, affording ...

SpaceX returns to Earth loaded with lab results

Oct 26, 2014

SpaceX's unmanned Dragon spacecraft splashed down in the Pacific Ocean on Saturday carrying a heavy load of NASA cargo and scientific samples from the International Space Station that experts hope could ...

Recommended for you

York's anti-malarial plant given Chinese approval

Apr 24, 2015

A new hybrid plant used in anti-malarial drug production, developed by scientists at the University of York's Centre for Novel Agricultural Products (CNAP), is now registered as a new variety in China.

The appeal of being anti-GMO

Apr 24, 2015

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.