Bone research that grows on you

Oct 31, 2006

Rapid and guided healing of bones has moved a step closer with research by two biomedical engineering students who have found new ways to deliver bone growth enhancers directly to broken or weakened bones.

Major ongoing research at Queensland University of Technology focuses on biodegradable materials that carry bone growth enhancing substances to encourage bones to heal quickly with much less intervention.

The research is ultimately aimed at repairing fractured bones or replacing bone weakened or lost from osteoporosis, cancer or trauma with minimal intervention and without painful and expensive bone grafts or pins and plates.

Fourth year biomedical engineering student Wayne Shaw has developed tiny biodegradable spheres made from polymers that can be loaded with calcium phosphate compounds – known bone growth facilitators – and placed on bone defects.

"As the microspheres degrade the calcium phosphate compounds are absorbed and encourage the bone to grow quickly into the area and build new bone," Mr Shaw said.

"The microspheres, which are highly porous, range in size from 50 to 500 microns and have calcium phosphate abundantly deposited throughout the pores, can be used in a variety of ways.

"They could be used to fill bone defects or cavities, to coat load bearing implants, and to make scaffolds for the regeneration of bone."

Mr Shaw won joint best exhibit in the National 2006 Engineering and Physical Sciences in Medicine conference at Noosa in September.

Fellow fourth year biomedical engineering student Achi Kushnir has developed a load bearing ceramic material capable of carrying the same bone growth enhancing chemicals and of being absorbed by the body.

Mr Kushnir has integrated a dense ceramic core with a porous ceramic layer that can be used in place of metal implants for some clinical situations because it will attach to and integrate with bone and eventually degrade away in the body.

"The dense core has high compressive strength for load bearing applications such as for the long bones of the legs or arms," Mr Kushnir said.

"The unique core structure of the material will provide the mechanical properties needed for load bearing bones and the outside porous layer will assist with the bone repair."

"Bioactive ceramics are known to be body-friendly but until now they have been limited by lack of mechanical properties including compressive strength for carrying loads."

Source: Queensland University of Technology

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Metals go from strength to strength

Apr 15, 2014

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

UAE reports 12 new cases of MERS

Health authorities in the United Arab Emirates have announced 12 new cases of infection by the MERS coronavirus, but insisted the patients would be cured within two weeks.

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...