Alloy of hydrogen and oxygen made from water

Oct 26, 2006

Water, the only indispensable ingredient of life, is just about the most versatile stuff on Earth. Depending on its temperature we can heat our homes with it, bathe in it, and even strap on skates and glide across it, to name only the most common of its many forms. When subjected to high pressures, however, water can take any of more than 15 different forms.

Researchers have now used x-rays to dissociate water at high pressure to form a solid mixture--an alloy--of molecular oxygen and molecular hydrogen. The work, by a multi-institutional team that includes Russell Hemley and Ho-kwang Mao of Carnegie's Geophysical Laboratory, appears in the October 27 issue of Science.

The researchers subjected a sample of water to extremely high pressures--about 170,000 times the pressure at sea level (17 Gigapascals)--using a diamond anvil, and zapped it with high-energy x-rays. Under these conditions, nearly all the water molecules split apart and re-formed into a solid alloy of O2 and H2. X-radiation proved to be the key to cleaving the O-H bonds in water; without it, the water remained in a high-pressure form of ice known as ice VII--one of at least 15 such variants of ice that exist under high pressure and variable temperature conditions.

"We managed to hit on just the right level of x-ray energy input," explained Hemley. "Any higher, and the radiation tends to pass right through the sample. Any lower, and the radiation is largely absorbed by the diamonds in our pressure apparatus."

This rather narrow range of energy requirement explains why, in hundreds of previous high-pressure x-ray experiments, the breakdown reaction had gone undiscovered: most such experiments tend to use more energetic x-rays. The experiments also required long, multiple-hour irradiation with x-rays; such long exposures had not been attempted before.

The researchers put the alloy through its paces, subjecting it to a range of pressure, temperature, and bombardment with x-ray and laser radiation. As long as the sample remained under pressure equivalent to about 10,000 times atmospheric pressure at sea level (1 Gigapascal), it stood up to this punishment. Although the substance is clearly a crystalline solid, more experiments are needed to determine its precise crystal structure.

"The new radiation chemistry at high pressure was surprising," said lead author Wendy Mao of Los Alamos National Laboratory. "The new alloy containing the incompatible oxygen and hydrogen molecules will be a highly energetic material."

Source: Carnegie Institution

Explore further: Can perovskites and silicon team up to boost industrial solar cell efficiencies?

add to favorites email to friend print save as pdf

Related Stories

Behind the dogmas of good old hydrodynamics

Mar 26, 2015

A new theory, which gives insights into the transport of liquid flowing along the surface under an applied electric field, was developed by a group of Russian scientists lead by Olga Vinogradova who is a ...

WaterNest 100: A pod-shaped vision of floating household

Mar 16, 2015

An article adaptation (from Environment@Harvard Volume 3, Issue 2) on the Harvard University Center for the Environment website said "Around the world, oceans are warming and expanding. Vast ice sheets are crumbling and melting into ...

Searching for the perfect chemical

Mar 20, 2015

Researchers at the University of Stavanger have taken on a nearly impossible task. With support from Total E&P Norge AS, they will attempt to develop new chemicals that combat scaling better than any substance ...

New transitory form of silica observed

Mar 20, 2015

A Carnegie-led team was able to discover five new forms of silica under extreme pressures at room temperature. Their findings are published by Nature Communications.

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.