Twisted Molecule: Large and Folded Like Protein -- But Completely Synthetic

Oct 26, 2006

The physiological functions of proteins depend on their folding into a particular spatial structure (tertiary structure): enzymes and their substrates must fit together like the proverbial lock and key. It has recently been discovered that not only large biomolecules are capable of stable, defined folding; synthetic molecules can do it too. Called foldamers, these molecules can even imitate the biological functions of the proteins they are modeled after.

However, until recently their size and complexity was strictly limited. French researchers have now produced an intricately folded molecule exclusively from manmade components. The dimensions of this foldamer correspond to those of the tertiary structures of smaller proteins.

The team led by Ivan Huc did not want to base the design of their foldamer on the structure of proteins, because the synthesis of large chains from small individual building blocks is difficult. The alternative was to use branched structures. They did adopt one important structural element from proteins: the helix. The researchers hooked eight quinoline units (nitrogen-containing aromatic six-membered rings with a shared edge) together into a chain. This type of octamer twists itself into a helix.

The researchers then bridged two such octamers together with a special branching link. This linker inserts so well into the two octamers that a continuous, stable helix is formed. The branching linker can then be used to hook two such helical structures together side by side. Once linked, the two helices do not lie in parallel, but rather at right angles to each other.

Helices can be twisted to the left or the right. In peptides, the direction of the helix is uniquely defined by the spatial structure of the individual building blocks. In the synthesis of the quadruple-octamers, however, an equal number of right- and left-handed helices are formed. The preferences demonstrated by the helices on pairing are determined by the solvent: In aromatic solvents, pairing of two helices with the same direction of twist is clearly preferred (70 %), while in chlorinated hydrocarbons up to 93 % of the pairs are formed from helices with opposite directions of twist. When the solvent is changed, the helices change their directionality to match these preferences.

“This proves both helices are involved in strong interactions with each other, just like a folded protein,” says Huc. “Our abiotic foldamer is the first of its kind and shows that it is possible to synthesize folded molecules that imitate the size and structural complexity of the tertiary structure of proteins, while consisting entirely of manmade building blocks.” The goal is to produce artificial structures with defined binding sites and uniquely positioned catalytic groups for controlled reactions with specific substrates.

Citation: Ivan Huc, Proteomorphous Objects from Abiotic Backbones, Angewandte Chemie International Edition, doi: 10.1002/anie.200603390

Source: Angewandte Chemie

Explore further: Oat breakfast cereals may contain a common mold-related toxin

add to favorites email to friend print save as pdf

Related Stories

Protein threshold linked to Parkinson's disease

Feb 02, 2015

The circumstances in which a protein closely associated with Parkinson's Disease begins to malfunction and aggregate in the brain have been pinpointed in a quantitative manner for the first time in a new ...

Recommended for you

Oat breakfast cereals may contain a common mold-related toxin

Feb 25, 2015

Oats are often touted for boosting heart health, but scientists warn that the grain and its products might need closer monitoring for potential mold contamination. They report in ACS' Journal of Agricultural and Food Chemistry that s ...

NETL invents improved oxygen carriers

Feb 24, 2015

One of the keys to the successful deployment of chemical looping technologies is the development of affordable, high performance oxygen carriers. One potential solution is the naturally-occurring iron oxide, ...

Research could make blue jeans green

Feb 23, 2015

Who doesn't like blue jeans? They're practically wrinkle-proof. The indigo dye that provides their distinctive color holds up to detergents, but ages into that soft, worn look. No wonder the average American ...

Novel electrode boosts green hydrogen research

Feb 20, 2015

Scientists from the National Physical Laboratory (NPL) have developed a novel reference electrode, and are working with hydrogen energy system manufacturer ITM Power to aid the development of hydrogen production ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.