Honey bee genome holds clues to social behavior

Oct 23, 2006

By studying the humble honey bee, researchers at the University of Illinois at Urbana-Champaign have come a step closer to understanding the molecular basis of social behavior in humans.

"The honey bee (Apis millifera) has been called a model system for social behavior," said Saurabh (pronounced SAW-rub) Sinha, a professor of computer science and an affiliate of the university's Institute for Genomic Biology. Using that model system, Sinha led a team that searched the honey bee genome for clues for social cues – a form of bee pressure that can cause bees to change jobs in response to needs of the hive.

"We want to learn how the honey bee society influences behavior in individual honey bees," said Sinha, who is lead author of a paper that will be posted online this week ahead of regular publication by the Proceedings of the National Academy of Sciences. "By studying the social regulation of gene expression, we hope to extrapolate the biology to humans."

Adult worker bees perform a number of tasks in the hive when they are young, such as caring for eggs and larvae, and then shift to foraging for nectar and pollen as they age. However, if the hive has a shortage of foragers, some of the young nurse bees will switch jobs and become foragers.

The job transition, whether triggered by age or social cues, involves changes in thousands of genes in the honey bee brain; some genes turn on, while others turn off.

Genes are switched on and off by short strings of DNA that lie close to the gene. The strings serve as binding sites for particular molecules, called transcription factors. For example, when the correct transcription factor latches into the binding site, the gene may be switched on. If the transcription factor breaks away from the binding site, the gene is switched off.

To search for genes that might play a role in social behavior, Sinha and his colleagues used the newly sequenced honey bee genome to scan the binding sites of transcription factors known to function in the development of fruit flies (Drosophila melanogaster) from a single cell to an adult.

A computer algorithm written by the researchers scanned nearly 3,000 genes. Statistical techniques were then used to investigate whether particular transcription factors correlated with genes that were differentially expressed (turned on or off) between nurse bees and foragers.

"We found five different transcription factors that showed a statistically significant correlation with socially regulated genes," Sinha said. "It appears that genes involved in nervous-system development in fruit flies are re-used by nature for behavioral functions in adult honey bees."

Their findings, Sinha said, suggest that honey bees will be useful in elucidating the mechanisms by which social factors regulate gene expression in brains, including those of humans.

Source: University of Illinois at Urbana-Champaign

Explore further: Researchers find new mechanism for neurodegeneration

add to favorites email to friend print save as pdf

Related Stories

Noise pollution impacts fish species differently

25 minutes ago

Acoustic disturbance has different effects on different species of fish, according to a new study from the Universities of Bristol and Exeter which tested fish anti-predator behaviour.

Atomic structure of key muscle component revealed

25 minutes ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Invertebrate numbers nearly halve as human population doubles

25 minutes ago

Invertebrate numbers have decreased by 45% on average over a 35 year period in which the human population doubled, reports a study on the impact of humans on declining animal numbers. This decline matters because of the enormous ...

Recommended for you

Researchers find new mechanism for neurodegeneration

25 minutes ago

A research team led by Jackson Laboratory Professor and Howard Hughes Investigator Susan Ackerman, Ph.D., have pinpointed a surprising mechanism behind neurodegeneration in mice, one that involves a defect in a key component ...

Schizophrenia's genetic architecture revealed (w/ Video)

Jul 23, 2014

Queensland scientists are closer to effective treatments for schizophrenia after uncovering dozens of sites across the human genome that are strongly associated with a genetic predisposition to schizophrenia.

Mysterious esophagus disease is autoimmune after all

Jul 22, 2014

(Medical Xpress)—Achalasia is a rare disease – it affects 1 in 100,000 people – characterized by a loss of nerve cells in the esophageal wall. While its cause remains unknown, a new study by a team of researchers at ...

User comments : 0