Neuroscientists pinpoint brain site for rapid learning

Oct 23, 2006

MIT researchers have provided the first two-pronged evidence--based on both behavior and physiology--that a specific juncture in the memory center of the brain is crucial for rapid learning.

The work, presented Oct. 18 at a meeting of the Society for Neuroscience in Atlanta, helps explain how injury or Alzheimer's disease result in loss of the ability to form new memories of facts and events.

The researchers, led by Thomas J. McHugh, research scientist at the Picower Institute for Learning and Memory, engineered a mouse lacking a receptor for a key neurotransmitter in the dentate gyrus. This serrated strip of gray matter is wrapped around and within the seahorse-shaped hippocampus, which is crucial in memory formation. Information arriving at the hippocampus first travels through the dentate gyrus.

"While it has long been known that damage to this region of the hippocampus affects short-term memory formation, little is understood about how each type of neuron-to-neuron connection contributes to memory in this circuit," McHugh said.

The researchers observed the behavior of the genetically manipulated mice and measured their neuronal activity. They found that neurons at a key juncture in the dentate gyrus that receives new input from other parts of the brain help mice recognize and remember new environments.

The mice without neurotransmitter receptors at this juncture "learned normally when trained slowly with hours or days between trials, but showed learning deficits when challenged to learn the same tasks quickly, with only minutes between trials," McHugh said. The finding shows that synapses--the connections among neurons--at the dentate gyrus are critical for rapid learning.

"This advance in the understanding of how the hippocampal circuit functions suggests possible therapeutic targets in diseases that lead to memory deficits," McHugh said.

McHugh's MIT colleagues on the work are Matthew Wilson, Picower Scholar and professor of neuroscience; Susumu Tonegawa, Picower Professor of Biology and Neuroscience and director of the Picower Institute; and Matthew W. Jones, a former Picower postdoctoral associate now at the University of Bristol.

Source: MIT

Explore further: Scientists 1 step closer to cell therapy for multiple sclerosis patients

add to favorites email to friend print save as pdf

Related Stories

Report: China to declare Qualcomm a monopoly

1 hour ago

(AP)—Chinese regulators have concluded Qualcomm Inc., one of the biggest makers of chips used in mobile devices, has a monopoly, a government newspaper reported Friday.

Scientists stalk coastal killer

2 hours ago

For much of Wednesday, a small group of volunteers and researchers walked in and out of the surf testing a new form of surveillance on the biggest killer of beach swimmers - rip currents.

Recommended for you

New technology allows hair to reflect almost any color

6 hours ago

What if you could alter your hair to reflect any color in the spectrum? What if you could use a flatiron to press a pattern into your new hair color? Those are possibilities suggested by researchers from ...

User comments : 0