Otherworldly bacteria that use radiated water for food discovered two miles down

Oct 19, 2006
Otherworldly bacteria discovered two miles down
About two miles below the ground in a South African gold mine, co-author Duane Moser stands next to the fracture zone (white area) where the one-of-a-kind bacteria were found. Credit: Images courtesy Li-Hung Lin and Duane Moser

Researchers have discovered an isolated, self-sustaining, bacterial community living under extreme conditions almost two miles deep beneath the surface in a South African gold mine. It is the first microbial community demonstrated to be exclusively dependent on geologically produced sulfur and hydrogen and one of the few ecosystems found on Earth that does not depend on energy from the Sun in any way. The discovery, appearing in the October 20 issue of Science, raises the possibility that similar bacteria could live beneath the surface of other worlds, such as Mars or Jupiter's moon Europa.

"These bacteria are truly unique, in the purest sense of the word," said lead author Li-Hung Lin, now at National Taiwan University, who performed many of the analyses as a doctoral student at Princeton and as a postdoctoral researcher at the Carnegie Institution's Geophysical Laboratory.

As Lin explained: "We know how isolated the bacteria have been because our analyses show that the water they live in is very old and hasn't been diluted by surface water. In addition, we found that the hydrocarbons in the local environment did not come from living organisms, as is usual, and that the source of the hydrogen (H2) needed for their respiration comes from the decomposition of water (H2O) by radioactive decay of uranium, thorium, and potassium."

Humans and most other land-dwelling organisms ultimately get their energy from the Sun, with photosynthetic plants forming the base of the food web. But in dark places where sunlight doesn't reach, life has to depend on other energy sources. Other communities of "chemoautotrophs"--a word chained together from Greek roots meaning "chemical self-nourishment"--have been found in exotic places such as aquifers, petroleum reservoirs, and vents linked to deep-sea volcanoes. Yet these communities all depend at least in part on nutrients that can be traced back to photosynthetic plants or bacteria.

The international team led by T. C. Onstott of Princeton University, which also includes Carnegie staff scientist Douglas Rumble and former Carnegie postdoctoral researcher Pei-Ling Wang, also now at National Taiwan University, found the community in a rock fracture that intersects the Mponeng gold mine near Johannesburg, South Africa. Water trapped in the fracture is home to the otherworldly bacteria.

Using genetic tools, the team discovered that there is very little species diversity in the rock fracture community. Compared with bacteria in the water used for mining, the fracture water is dominated by one type of bacteria related to Desulfotomaculum, which is known to get energy from the reduction of sulfur compounds.

"We also believe that the sulfate used by these creatures is left-over from ancient groundwater mixed with ancient hydrothermal fluid. We can detect that because the chemical signature arises from interacting with the fracture's wall rock," commented Rumble. "It is possible that communities like this can sustain themselves indefinitely, given enough input from geological processes. Time will tell how many more we might find in Earth's crust, but it is especially exciting to ponder whether they exist elsewhere in the solar system."

Source: Carnegie Institution

Explore further: Pollen on birds shows feeding grounds

add to favorites email to friend print save as pdf

Related Stories

Pilbara home to 3.5 billion-year-old bacterial ecosystems

Nov 11, 2013

(Phys.org) —Evidence of complex microbial ecosystems dating back almost 3.5 billion years has been found in Western Australia's Pilbara region by an international team including UWA Research Assistant Professor ...

'Underground Galapagos' excites scientists

Mar 16, 2013

Diverse underground ecosystems buried deep beneath the Earth's crust may offer clues to the origins of life on Earth, several recent studies have revealed.

Amazon forest and the price of gold

Apr 22, 2011

Ellen Silbergeld keeps the price of gold posted on the door to her office at the Johns Hopkins Bloomberg School of Public Health in Baltimore. The price is now at a record high (better than $1,500 an ounce) ...

Stepping stones through time

Oct 05, 2010

Stromatolites are the most ancient fossils on Earth, and these structures built by microbes can still be found forming today in various places around the globe. Although they provide a straight line of life’s ...

Recommended for you

Researchers look at small RNA pathways in maize tassels

14 hours ago

Researchers at the University of Delaware and other institutions across the country have been awarded a four-year, $6.5 million National Science Foundation grant to analyze developmental events in maize anthers ...

How plant cell compartments change with cell growth

14 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

14 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

User comments : 0