How do massive stars form?

Nov 08, 2005

In an upcoming issue, the journal Astronomy & Astrophysics will publish the most complete picture of a “triggered” star-forming region. Induced (or “triggered”) star formation is one of the processes that are supposed to lead to the formation of massive stars. Massive stars play a key role in the chemical and dynamical evolution of galaxies.

The way massive stars form is still much debated among the astronomers’ community: it is currently one of the hottest astrophysical topics. Do they form by accretion as low-mass stars do or do they need the environment of a dense cluster to form through the merging of low mass protostars?

In this framework, the team led by Annie Zavagno and Lise Deharveng (from the Laboratoire d’Astrophysique de Marseille, France) selected regions where several generations of massive stars are likely to be formed. Stars more massive than 8 solar masses, once formed, emit intense UV photons that ionize the surrounding gas. The region filled with ionized hydrogen is called an HII region. Theory suggests that the expansion of the HII region can trigger massive star formation: after the HII region has formed, it expands continuously because the temperature inside the region is much higher than in the cold environment that surrounds it. During the expansion, a dense layer of gas and dust is collected around the HII region, after which gravitational instabilities in the layer cause it to fragment into dense clumps, which then go on to collapse into new stars. The fragments are massive and thus form massive objects (stars or clusters). The successive steps of this process, called collect and collapse process, are shown in the image below.

To characterize this process, the team selected the Galactic HII region RCW 79, located 14000 light-years from the Earth. They combined observational data obtained at different wavelengths, as well as from various origins (space, ground-based telescopes, and archived observations), to probe different parts of the region.

The orange image was obtained in the infrared range with NASA’s Spitzer Space Telescope: it depicts with high precision the dust shell that surrounds the HII region RCW 79. The blue part of the image corresponds to the Ha emission line that probes the ionized hydrogen (observations from the SuperCOSMOS Sky Survey): clearly, the shell is filled in by ionized hydrogen. The team then obtained their own set of observations to elucidate the complete picture of the star-forming region. The yellow contours correspond to observations obtained at millimeter wavelengths with the ESO Swedish Submillimetre Telescope (SEST). These contours depict cold dust condensations in the shell structure. The team has identified the newly-formed stars associated with these condensations, using mid-infrared Spitzer observations from the GLIMPSE survey. They find that second-generation massive stars (with mass higher than 8 solar masses) are associated with the main condensations. One of these condensations was observed at near-infrared wavelengths with the ESO-New Technology Telescope. It includes a massive star that is evolved enough to emit high-energy photons and to give rise to a compact HII region. This compact HII region is thus a second-generation HII region.

The locations of all the structures that were picked out at various wavelengths agree very well with the predictions of the collect and collapse process. The conclusions drawn by the team largely rely on the morphological relations between these structures. The combined picture of RCW 79 they obtained is therefore a straightforward illustration of the triggered massive-star formation process that now occurs in this region. These observations show that the collect and collapse process is the main triggering agent of massive star formation observed on the borders of this region.

The collect and collapse process: a way of triggering the formation of massive stars


Image: The collect and collapse process: a way of triggering the formation of massive stars.

Source: Journal Astronomy and Astrophysics

Explore further: Cosmologists weigh cosmic filaments and voids

add to favorites email to friend print save as pdf

Related Stories

ISOLDE sheds light on dying stars

Apr 04, 2014

What happens inside a dying star? A recent experiment at CERN's REX accelerator offers clues that could help astrophysicists to recalculate the ages of some of the largest explosions in the universe.

Can light orbit a black hole?

Mar 25, 2014

Since black holes are the most powerful gravitational spots in the entire Universe, can they distort light so much that it actually goes into orbit? And what would it look like if you could survive and follow ...

Image: Star-forming region ON2

Mar 24, 2014

(Phys.org) —Massive stars are born in tumultuous clouds of gas and dust. They lead a brief but intense life, blowing powerful winds of particles and radiation that strike their surroundings, before their ...

Hardy star survives supernova blast

Mar 20, 2014

(Phys.org) —When a massive star runs out fuel, it collapses and explodes as a supernova. Although these explosions are extremely powerful, it is possible for a companion star to endure the blast. A team ...

Recommended for you

Cosmologists weigh cosmic filaments and voids

2 hours ago

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Red moon at night; stargazer's delight

18 hours ago

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

Meteorites yield clues to Martian early atmosphere

20 hours ago

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

User comments : 0

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...