Physical Review Letter on Breaking Spaghetti Leads to 2006 Ig Noble Award

Oct 06, 2006

Basile Audoly and Sebastien Neukirch of the Université Pierre et Marie Curie earned the infamous 2006 Ig Noble prize for physics for their insights into why dry spaghetti often breaks into more than two pieces when it is bent. Fragmentation of Rods by Cascading Cracks: Why Spaghetti Does Not Break in Half was published in the American Physical Society journal Physical Review Letters in August of 2005.

Pasta-eaters and scientists alike have been puzzled by the physics of breaking spaghetti. Even Nobel Laureate Richard Feynman pondered the question. In order to solve the mystery Audoly and Neukirch experimented with several different thicknesses of dry spaghetti, which they clamped at one end, then bent and suddenly released, causing the strand to break.

According to their analysis, after release, the rod's curvature initially increases near the just-released end. Then a wave travels along the pasta. The first break occurs somewhere along the rod when the curvature exceeds a critical limit. The shock of the initial break then causes more bending waves to travel along the two newly formed pieces of the spaghetti, where they locally increase the curvature further and cause more breaks, leading to a cascade of cracks.

"I don't really follow kitchen science," says APS Public Outreach Specialist Kendra Rand, "but I'm sure it's great relief to kitchen physicists everywhere that Audoly and Neukirch have put this nagging issue to rest, and earned a prize for their efforts. Although, they might have preferred a nice thank you card or something."

While the subject may at first seem a bit frivolous for the pages of a prestigious journal such as Physical Review Letters, it provides important information about the failure of any long, brittle structure. Bridge spans, buildings, vehicle parts, and human bones may fracture into multiple segments under some circumstances. Thanks to a study of pasta, Audoly and Neukirch have given us added understanding about why things break the way they do.

Source: American Physical Society

Explore further: New study refines biological evolution model

add to favorites email to friend print save as pdf

Related Stories

"Kissing genes" breakthrough

Nov 14, 2013

In a ground-breaking discovery that will have a major impact on our understanding of the function of DNA, our genetic blueprint, a group of scientists from Wits and the Council for Scientific and Industrial ...

Researchers make magnetic fields breakthrough

Aug 20, 2010

(PhysOrg.com) -- Researchers at the University of Dundee have made a breakthrough in the study of magnetic fields, which enhances our understanding of how stars, including the Sun, work.

Researchers reveal the tangle under turbulence

Mar 28, 2007

Picture the flow of water over a rock. At very low speeds, the water looks like a smooth sheet skimming the rock's surface. As the water rushes faster, the flow turns into turbulent, roiling whitewater that ...

Recommended for you

A new multi-bit 'spin' for MRAM storage

6 hours ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

New study refines biological evolution model

Jul 21, 2014

Models for the evolution of life are now being developed to try and clarify the long term dynamics of an evolving system of species. Specifically, a recent model proposed by Petri Kärenlampi from the University ...

User comments : 0