Research to illuminate inner workings of 'protein nanomachines'

Oct 06, 2006
Research to illuminate inner workings of 'protein nanomachines'
PNNL researchers are developing a new approach for studying the molecular mechanisms of enzymes. They use a three-electrode platform to oxidize and reduce enzymes, then capture chemical reaction data with a single molecule spectroscope.

Development of new instrumentation and methods for studying the molecular mechanisms of enzymes are the goals of a three-year, $1.5 million contract awarded to Pacific Northwest National Laboratory by the Department of Energy's energy biosciences program.

Enzymes—the protein nanomachines of cells—have potential energy applications such as hydrogen production, fuel cell development and environmental remediation. However, to develop these applications, researchers must fill gaps in the fundamental understanding of enzymatic processes. Redox enzymes, those targeted in the new project, are essential to all life forms because they enable reaction cycles of reduction and oxidation through electron transfer within cells.

As a first step, PNNL researchers will couple an electrochemical method called "cyclic voltammetry" with single-molecule spectroscopy into a new electrochemical single-molecule spectrometer, or CVSMS. The new equipment will allow dynamic studies of fundamental enzymatic redox reactions.

Enzymes typically are unstable outside the cell, making them hard to study. In earlier work, the PNNL investigators discovered a way to stabilize enzymes and extend their lifespan by entrapping them into a nano-structured matrix.

The enzymes will be stabilized in the nano-structured matrix and then placed inside a miniature electrochemical cell that will deliver controlled electrical currents. As the tiny jolts of electricity affect catalytic reactions of the enzymes, the researchers will observe the single enzyme molecules in action. Using chemical signatures that the CVSMS generates, they will study the catalytic electron transfer processes.

To obtain the necessary enzyme variants, the research team will use a new cell-free process, rather than traditional cellular methods for protein production. The unique robotic instrument can produce up to 384 proteins or protein variants a day.

"We expect insights gained from this research to provide fundamental knowledge needed to understand the role of electron transfer in catalytic reactions," said principal investigator Eric Ackerman, adding that the research could be useful in a number of directions, including bioenergy and environmental remediation.

The research team also includes co-principal investigators Chenghong Lei, Dehong Hu and Chuck Windisch.

Source: PNNL

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

Hunting for new genes by sequencing seas samples

Jun 27, 2013

(Phys.org) —Mass DNA sequencing has led to a better knowledge of marine micro-organisms in their environment and helps to discover new genes of interests. However, it is only part of the answer for biotech ...

Power behind primordial soup discovered

Apr 04, 2013

(Phys.org) —Researchers at the University of Leeds may have solved a key puzzle about how objects from space could have kindled life on Earth.

Nano-machines for 'bionic proteins'

Feb 15, 2013

Physicists of the University of Vienna together with researchers from the University of Natural Resources and Life Sciences Vienna developed nano-machines which recreate principal activities of proteins. ...

Activating ALC1: With a little help from friends

Nov 29, 2012

Chromatin remodeling—the packaging and unpackaging of genomic DNA and its associated proteins—regulates a host of fundamental cellular processes including gene transcription, DNA repair, programmed cell ...

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.