Researchers to develop active nanoscale surfaces for biological separations

Oct 06, 2006

A team of researchers has received a four-year, $1 million grant from the National Science Foundation to study improved methods for biological separations. Led by Ravi Kane, the Merck Associate Professor of Chemical and Biological Engineering at Rensselaer Polytechnic Institute, the group plans to develop nanoscale surfaces that actively reassemble in the presence of DNA, which could eventually lead to more efficient separation tools for genomics and proteomics.

The researchers are taking their inspiration from nature, mimicking the very membranes that surround our cells to create platforms for separating biological molecules. These "lipid bilayers," which are made up of two opposing layers of fat molecules, act as the cell's barrier to the outside world. DNA molecules move on these surfaces in two dimensions, much like objects on a conveyor belt. Kane and his colleagues recently discovered that the mobility of DNA molecules is closely coupled to the movement of the underlying lipid bilayer.

"The advantage of these surfaces is that they can be actively modified," Kane said. "Thus by changing the temperature, shining light, or applying an electric field, we propose to change the behavior of the surfaces." In one approach, Kane and his colleagues are building a molecular obstacle course made up of nanoscale domains. When an electric field is applied at one end, DNA molecules will move across the surface and collide with the obstacles, impeding their motion. The researchers have already made surfaces on which they can control the size and positioning of obstacles; next, they plan to test the movement of DNA.

The overarching goal is to understand how biological molecules of all types move across the surface of lipid bilayers. "This particular project is focused on DNA, but the approach could potentially be used for separating other biological molecules, such as proteins," Kane said. He envisions immediate applications in genomics and proteomics, with the new approach providing several improvements over current techniques.

The new surfaces could yield separations with higher resolution and greater efficiency, Kane suggested. And they can be easily fabricated in a normal laboratory, whereas other surfaces require the use of a clean room. The nanoscale surfaces are also dynamic, while the materials in use today cannot be altered once they have been made.

In the more distant future, the surfaces could even be used as biosensors or to deliver DNA molecules for gene therapy applications, Kane said.

Source: Rensselaer Polytechnic Institute

Explore further: Nanocontainers for nanocargo: Delivering genes and proteins for cellular imaging, genetic medicine and cancer therapy

add to favorites email to friend print save as pdf

Related Stories

Biohybrid solar cells—Spinach power gets a big boost

Sep 04, 2012

An interdisciplinary team of researchers at Vanderbilt University have developed a way to combine the photosynthetic protein that converts light into electrochemical energy in spinach with silicon, the material ...

Seaweed Transformed Into Stem Cell Technology

Nov 12, 2007

Engineers at Rensselaer Polytechnic Institute have transformed a polymer found in common brown seaweed into a device that can support the growth and release of stem cells at the sight of a bodily injury or at the source of ...

Putting stem cell research on the fast track

Sep 12, 2007

Engineers at Rensselaer Polytechnic Institute have developed tools to help solve two of the main problems slowing the progress of stem cell research — how to quickly test stem cell response to different ...

Recommended for you

For electronics beyond silicon, a new contender emerges

12 hours ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

14 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

14 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

User comments : 0