Less expensive fuel cell may be possible

Oct 03, 2006

Scientists at Los Alamos National Laboratory have developed a new class of hydrogen fuel-cell catalysts that exhibit promising activity and stability. The catalysts are made of low-cost nonprecious metals entrapped in something called a heteroatomic-polymer structure, instead of platinum materials typically used in fuel cells.

In research published recently in the scientific journal Nature, Los Alamos scientists Rajesh Bashyam and Piotr Zelenay describe tests conducted on a cobalt-polypyrrole-carbon (Co-PPY-XC72) composite. The composite, consisting of cobalt, polymer and carbon, was developed in research aimed at developing low-cost non-platinum catalysts for the polymer electrolyte fuel-cell (PEFC) cathode.

While the electrical energy producing activity of the catalyst is lower than that of platinum-based catalysts used in polymer electrolyte fuel cells, the new material shows exceptional performance stability for over one hundred hours of continuous testing, a result never before obtained with non-precious metal catalysts in PEFCs.

"Besides being made of inexpensive and environmentally benign materials," said Zelenay, "the chief advantage of these composite catalysts for oxygen reduction is that they can operate in the acidic environment of the polymer electrolyte fuel cell."

Bashyam and Zelenay are investigating the nature of catalysts in a variety of composites. They are also part of a larger Laboratory effort aimed at developing new catalyst and electrode structures that could increase the current output from fuel cells.

According to Ken Stroh, program manager for the Los Alamos fuel-cell effort, "The two biggest obstacles in making a commercially viable fuel cell have traditionally been high cost and inadequate durability. Our focus at Los Alamos is to attack those obstacles as a system in which you simultaneously strive for lower costs and higher durability."

Source: Los Alamos National Laboratory

Explore further: Pseudoparticles travel through photoactive material

Related Stories

LLNL, Intel, Cray produce big data machine

Nov 05, 2013

(Phys.org) —Lawrence Livermore National Laboratory in partnership with Intel and Cray, today announced a unique high-performance computing (HPC) cluster that will serve research scientists at all three ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.