'Molecular Legos' Net Professor, Student Nanotech Prize

Nov 04, 2005

A University of Pittsburgh researcher and his student have been awarded prestigious prizes from the Foresight Nanotech Institute for their work in developing a "molecular Lego® set" that will enable, for the first time, the quick manufacture of sturdy, predictable nanostructures.

Christian Schafmeister, assistant professor of chemistry at the University of Pittsburgh and a researcher in the University’s Institute of NanoScience and Engineering (INSE), was awarded the 2005 Foresight Institute Feynman Prize for experimental work, named in honor of pioneer physicist Richard Feynman. Schafmeister’s student Christopher Levins, a doctoral candidate in chemistry, received the Foresight Distinguished Student Award for work that he did within the umbrella of Schafmeister’s research. They received the awards at the institute’s awards banquet Oct. 26.

Schafmeister has designed 14 small molecules, each of which is about half a nanometer across and includes two removable molecular caps. Controlled chemical reactions strategically strip away the caps, causing the molecules to link together in predictable ways with pairs of stiff bonds—similar to Lego® blocks. He has snapped together 3.6-nanometer rods and 1.8-nanometer crescents, and has developed software that can aid in the construction of a wide variety of shapes.

With this method of nanofabrication, which he calls “a completely new field,” Schafmeister is using his blocks to craft hinged, molecular traps that attract specific molecules, snap shut, and light up, serving as perfect chemical sensors—just one of an almost infinite number of possible uses. Molecules with customized cavities could serve as catalysts or biomedical agents. Because the molecules are large enough to have interesting functions and rigid, designed shapes, they hold great promise as nanoscale parts for future atomically precise nanoscale machines.

“We’re developing a new programming language for matter,” said Schafmeister, “and we’re writing, ‘Hello, world.’”

Levins is working on one approach to constructing complex nanoscale devices by developing a systematic methodology for the design and synthesis of rigid macromolecular scaffolds. “Chris made some of the first breakthroughs—building blocks and larger structures—in our research,” said Schafmeister.

“We’re proud to see Dr. Schafmeister and his student honored for nanotechnology research,” said University Provost James V. Maher. “Pitt’s program in nanoscience is focused on platform technologies, like Dr. Schafmeister’s, that will have a real impact on future research and applications.”

Source: University of Pittsburgh

Explore further: The latest fashion: Graphene edges can be tailor-made

add to favorites email to friend print save as pdf

Related Stories

A helping hand for pygmy hippos

5 minutes ago

Nobody knows how many pygmy hippos remain in wild habitats in West Africa, but there are only about 350 in captivity world-wide and a researcher at The University of Western Australia is in a race against ...

New conductive coatings for flexible touchscreens

25 minutes ago

Mobile phones and smart phones still haven't been adapted to the carrying habits of their users. That much is clear to anyone who has tried sitting down with a mobile phone in their back pocket: the displays ...

Is glass a true solid?

35 minutes ago

Does glass ever stop flowing? Researchers at the University of Bristol and Kyoto University have combined computer simulation and information theory, originally invented for telephone communication and cryptography, ...

Bring on driverless cars

5 minutes ago

Imagine no more gridlock, road rage and drunk driving—and 90 percent fewer car accidents. You could well be able to sit back and enjoy the ride sooner than you think, according to the engineers who are ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.