Molecular scissors help cancer cells break out and spread

Sep 29, 2006

A University of Michigan research team has identified how cancer cells employ a sort of molecular scissors to cut their way out of tumors and begin spreading throughout the body.

This spread of cancer cells, called metastasis, marks a turning point in the progression of the disease, after which treatment and recovery become more difficult.

"We asked how cancer cells cut their way through tissues," said Stephen Weiss, Life Sciences Institute research professor and division chief, molecular medicine and genetics in the U-M Medical School. "They use what we call proteases, a type of molecular scissors. However, there are so many different types of these scissors encoded by the human genome, we wanted to focus our attention on finding the subset used by cancers."

In all forms of cancer, a hallmark of malignancy is the tumor's ability to penetrate the basement membrane, a specialized connective tissue that lines the internal and external surfaces of the body including blood vessels, nerves, muscle and fat. Of the more than 500 enzymes that could be used by cells as molecular scissors, the Weiss team found that three proteases, termed MT1-MMP, MT2-MMP and MT3-MMP, are the most likely candidates that regulate cancer cell invasion.

The tumor cells appear to use these three enzymes to cut their way through the basement membrane, thus allowing cancer cells access to blood vessels which act as conduits for the spread of malignant cells to distant sites in the body.

"These closely related proteases allow cancer cells to start eating through basement membranes and the surrounding tissues," Weiss said. "This is the first critical step in the malignant process and allows the rapid spread of cancer cells through the body."

By identifying this set of proteases, the studies by Weiss and his colleagues have provided the first known proof that a small set of genes and proteins may underlie the cancer cell metastatic process. While their work is still at an early stage, the researchers are attempting to develop new inhibitors of these proteases so that they could test their importance in animal models of human cancer.

"A cancer cell metalloprotease triad regulates the basement membrane transmigration program," by Kevin Hotary, Xiao-Yan Li, Edward Allen, Susan L. Stevens and Stephen J. Weiss, appears as an advanced online publication in the journal Genes & Development and in print on Oct. 1, 2006.

Source: University of Michigan

Explore further: Body Mass Index associated with breast cancer, regardless of body shape

add to favorites email to friend print save as pdf

Related Stories

Enzyme helps cancer cells avoid genetic instability

Jan 21, 2013

Cancer cells are resourceful survivors with plenty of tricks for staying alive. Researchers have uncovered one of these stratagems, showing how cells lacking the tumor suppressor BRCA1 can resume one form ...

Recommended for you

Physicians target the genes of lung, colon cancers

6 hours ago

(Medical Xpress)—University of Florida physicians and researchers are collaborating to map the genes of different types of cancer, and then deliver medication to attack cancer at its source.

User comments : 0

More news stories

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...