Ancient Birds Flew On All-Fours

Sep 26, 2006

The earliest known ancestor of modern-day birds took to the skies by gliding from trees using primitive feathered wings on their arms and legs, according to new research by a University of Calgary paleontologist. In a paper published in the journal Paleobiology, Department of Biological Sciences PhD student Nick Longrich challenges the idea that birds began flying by taking off from the ground while running and shows that the dinosaur-like bird Archaeopteryx soared using wing-like feathers on all of its limbs.

"The discussions about the origins of avian flight have been dominated by the so-called 'ground up' and 'trees down' hypotheses," Longrich said. "This paper puts forward some of the strongest evidence yet that birds descended from arboreal parachuters and gliders, similar to modern flying squirrels."

The first fossil of the Jurassic-era dinosaur Archaeopteryx lithographica was discovered in Germany in 1861, two years after Charles Darwin published his theory of evolution in On The Origin of Species. Since then, eight additional specimens have been unearthed and Archaeopteryx is considered the best evidence that birds evolved from dinosaurs since it had both feathers and a bird-like wishbone, along with classic reptilian features of a long bony tail, claws and teeth.

Although scientists immediately noticed feather-like structures on the hind limbs, they were dismissed as insulating body feathers that didn't play a role in the animal's flight. It wasn't until several four-winged dinosaurs in China were described in 2002 that researchers began to re-examine Archaeopteryx's legs.

"The idea of a multi-winged Archaeopteryx has been around for more than a century, but it hasn't received much attention," Longrich said. "I believe one reason for this is that people tend to see what they want or expect to see. Everybody knows that birds don't have four wings, so we overlooked them even when they were right under our noses."

Under the supervision of professor Anthony Russell, Longrich examined Archaeopteryx fossils and determined that the dinosaur's leg feathers have an aerodynamic structure that imply its rear limbs likely acted as lift-generating "winglets" that played a significant role in flight.

Nick Longrich's paper, "Structure and function of hindlimb feathers in Archaeopteryx lithographica" appears in the September, 2006 issue of the journal Paleobiology.

Copyright 2006 by Space Daily, Distributed by United Press International

Explore further: New hadrosaur noses into spotlight

add to favorites email to friend print save as pdf

Related Stories

Separation of para and ortho water

24 minutes ago

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

Dogs can be pessimists too

34 minutes ago

Dogs generally seem to be cheerful, happy-go-lucky characters, so you might expect that most would have an optimistic outlook on life.

Recommended for you

New hadrosaur noses into spotlight

23 hours ago

Call it the Jimmy Durante of dinosaurs – a newly discovered hadrosaur with a truly distinctive nasal profile. The new dinosaur, named Rhinorex condrupus by paleontologists from North Carolina State Univer ...

Militants threaten ancient sites in Iraq, Syria

Sep 19, 2014

For more than 5,000 years, numerous civilizations have left their mark on upper Mesopotamia—from Assyrians and Akkadians to Babylonians and Romans. Their ancient, buried cities, palaces and temples packed ...

New branch added to European family tree

Sep 17, 2014

The setting: Europe, about 7,500 years ago. Agriculture was sweeping in from the Near East, bringing early farmers into contact with hunter-gatherers who had already been living in Europe for tens of thousands ...

User comments : 0