Ultrafast star escapes black hole

Sep 21, 2006

At last astronomers have a method to accurately measure the speed of stars within a galaxy containing a black hole. Dutch researcher Alessia Gualandris developed the algorithm for this in cooperation with the Astronomical Institute "Anton Pannekoek" and the Amsterdam Informatics Institute. The outcomes of this groundbreaking research provide convincing evidence for the relationship between galactic nuclei, heavy black holes and ultrafast stars in the Milky Way.

Galactic nuclei are the cores of galaxies, groups of thousands to millions of stars that are held together by gravity. As stars in the nucleus are so close together, interactions readily occur. If ultraheavy black holes (black holes several million times heavier than the sun) are also involved, stars can be slung out of the galaxy (for example the Milky Way) at speeds of more than one thousand kilometres per second. The astrophysical reasons for this are simple but can only be demonstrated with detailed calculations on specially developed computers.

The interdisciplinary research team of which Gualandris was a member (and that cooperated with Japanese, German and US researchers) spent the past four years developing algorithms and special computers in order to accurately calculate the dynamic and internal evolution of a galactic nucleus. However, these calculations can only be performed if the interactions between all of the stars are very accurately described. Gualandris developed a special new algorithm to perform these calculations efficiently on a parallel computer. With this it was at last possible to simulate systems of more than one million stars.

The research results are important for further research into galaxies, black holes and the interaction between these. Dense stellar systems like star clusters or galaxies are fascinating for both astrophysicists and computer scientists due to their enormous physical diversity and because calculations of their high mobility are numerically very complex. Up until now these calculations were difficult to perform as these systems are unsuitable for analytical methods and approximations are not accurate enough. With Gualandris' method the numerical problems have been solved and the origin of ultrafast stars in the Milky Way can be explained.

Source: NWO

Explore further: How baryon acoustic oscillation reveals the expansion of the universe

add to favorites email to friend print save as pdf

Related Stories

Toothpaste fluorine formed in stars

Aug 21, 2014

The fluorine that is found in products such as toothpaste was likely formed billions of years ago in now dead stars of the same type as our sun. This has been shown by astronomers at Lund University in Sweden, ...

Radio-burst discovery deepens astrophysics mystery

Jul 10, 2014

The discovery of a split-second burst of radio waves by scientists using the Arecibo radio telescope in Puerto Rico provides important new evidence of mysterious pulses that appear to come from deep in outer ...

How NASA builds a space laser

Jun 04, 2014

To build a satellite that will measure all the bumps and dips of our dynamic Earth, engineers started with a black box, built of a composite honeycomb material to make it as light as possible.

Recommended for you

The Great Cold Spot in the cosmic microwave background

Sep 19, 2014

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

Mystery of rare five-hour space explosion explained

Sep 17, 2014

Next week in St. Petersburg, Russia, scientists on an international team that includes Penn State University astronomers will present a paper that provides a simple explanation for mysterious ultra-long gamma-ray ...

User comments : 0