Scientists get best look ever at water/life connection

Sep 15, 2006

No one has ever seen exactly how water molecules interact with proteins – even though water is the essential element for life . . . that is, not until now.

Researchers led by Ohio State University physicist Dongping Zhong revealed these interactions for the first time, and report the results in the current issue of the Proceedings of the National Academy of Sciences.

Proteins are complex molecules that form the main support structure for plant and animal cells, and they also regulate biochemical reactions.

Zhong's project aims eventually to explain how water helps enable life-supporting biological functions such as protein folding or enzyme catalysis. But for now, this early result ends decades of controversy on what happens in the microscopic realm where water and proteins meet.

The controversy, Zhong explained, stemmed from the fact that researchers across different disciplines used different methods to study the problem. Because of that, they got different answers on the speed with which these essential biochemical reactions take place.

"A biologist will tell you that water and proteins must interact on a nanosecond [one billionth of a second] time scale, because that's how fast proteins move," he said. "And a physicist will tell you that the interaction would happen much faster -- on the picosecond [one trillionth of a second] time scale -- because that's how fast water molecules move. And someone who uses X-rays will give you a different answer than someone who uses nuclear magnetic resonance and so on."

"My feeling is that there is no real controversy -- everybody is just looking at the same answer from different angles," he added.

The answer, revealed in Zhong's lab: water molecules do move fast on their own, but they slow down -- to a speed midway between the nanosecond and picosecond scale -- to connect with proteins.

Zhong, an assistant professor of physics, used ultra-fast laser pulses to take snapshots of water molecules moving around a protein taken from a common bacterium, Staphylococcus.

The key to getting a good view of the interaction was to precisely locate an optical probe on the protein surface. They inserted a molecule of the amino acid tryptophan into the protein as a probe, and measured how water moved around it -- a technique Zhong began to develop when he was a postdoctoral researcher in Nobel laureate Ahmed Zewail's lab at the California Institute of Technology 5 years ago.

Laser studies of the protein while it was immersed in water revealed that far away from the protein -- in a region Zhong called "bulk water" -- the water molecules were flowing around each other at their typically fast speeds, with each movement requiring only a single picosecond.

But the water near the protein formed several distinct layers. The outermost layer flowed at a slower speed than in bulk water, and the innermost layer even slower. In that innermost layer, each movement of a water molecule to connect with the protein required at least 100 picoseconds to complete.

So when it comes to supporting life -- on the molecular scale, anyway -- water has to move 100 times slower to get the job done.

"The fast-moving water has to slow down to connect with a slow-moving protein -- it's that simple," Zhong said.

"It sounds trivial, I know. But it should be trivial.

"It's an essential biological interaction that has to work just right every time. If the water moved too slowly, it could get in the way of proteins trying to meet -- it would be a bottleneck in the process. And if it moved too fast, it couldn't connect with the protein at all. So I think this is nature's way of getting the interaction just right."

Source: Ohio State University

Explore further: A new generation of storage—ring

add to favorites email to friend print save as pdf

Related Stories

Tiny carbon nanotube pores make big impact

22 hours ago

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

Triplet threat from the sun

Oct 21, 2014

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down ...

Recommended for you

A new generation of storage—ring

5 hours ago

A bright synchrotron source that emits over a wide part of the electromagnetic spectrum from the infrared to hard X-rays is currently being built in Lund, Sweden. The MAX IV facility presents a range of technical ...

Universe may face a darker future

9 hours ago

New research offers a novel insight into the nature of dark matter and dark energy and what the future of our Universe might be.

High-intensity sound waves may aid regenerative medicine

Oct 30, 2014

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

Oct 30, 2014

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.