Ferns provide model for tiny motors powered by evaporation

Sep 14, 2006
A cluster of actual sporangium

Scientists looked to ferns to create a novel energy scavenging device that uses the power of evaporation to move itself -- materials that could provide a method for powering micro and nano devices with just water or heat.

"We've shown that this idea works," said Michel Maharbiz, assistant professor of electrical engineering and computer science and principal investigator in the group that built the device. "If you build these things they will move. The key is to show that you can generate electricity from this."

As often happens, the research started while doctoral student Ruba Borno was exploring another idea entirely. Borno was interested in mimicking biological devices, specifically microchannels that plants use to transport water, so Maharbiz gave her a book on plants.

But something else in the book caught her attention – the section on how ferns spread their spores.

"It's essentially a microactuator," said Maharbiz, meaning that the fern sporangium transforms one form of energy, in this case heat via the evaporation of water, into motion. When the cells in the outer wall of the sporangium were water logged, the sporangium remained closed like a fist, storing the spores safely inside. But when the water in the outer wall evaporated, it caused the sporangium to unfurl and eject the spores into the environment.

The researchers examined some fern leaves under a microscope. They found that when exposed to light or heat or any evaporation-inducing event, the sporangia opened and released the spores.

"Once we saw that, we thought, ‘Oh, we have to build that,'" Maharbiz said.

The method for making the material is simple enough. A wafer is coated with silicone and the hit with light, causing a pattern. The residual pattern is lifted off and that is used for the device. It resembles a curved spine with equally spaced ribs fanning outward from the spine.

To make the device move, Borno said, they load the space between the ribs with water, and when the water evaporates, the surface tension of the water pulls on the tips of the ribs so that the tips move toward each other, straightening out the spine of the device. In this way, the closed device opens wide—it moves.

They plan to add electrical components to the device in an attempt to generate electricity. They predict that the device will be able to generate the same amount of electricity as other scavenging devices, say, a solar cell in a calculator.

The ideal application, Borno said, would be to power a remote sensor where it's impossible to change the batteries regularly.

Click here to see video.

Source: University of Michigan

Explore further: Solving molybdenum disulfide's 'thin' problem

add to favorites email to friend print save as pdf

Related Stories

Behind the dogmas of good old hydrodynamics

Mar 26, 2015

A new theory, which gives insights into the transport of liquid flowing along the surface under an applied electric field, was developed by a group of Russian scientists lead by Olga Vinogradova who is a ...

Blue Freedom uses power of flowing water to charge

Mar 26, 2015

Good friends may decide to tell you something that is not true but nonetheless sustaining: Nothing is impossible. That was the case of Blue Freedom co-founder who asked his friend if it would be possible ...

Green sea turtles recover in Florida, Mexico

Mar 20, 2015

Long considered an endangered species, green sea turtles in Florida and Mexico have bounced back and officials said Friday they are seeking to change the turtles' protected status to "threatened."

Zoo innovations has animals foraging for food

Mar 20, 2015

When red pandas go on exhibit for the first time at Brookfield Zoo in July, they'll be housed around a broad tree that looks like a giant bonsai and has magical qualities.

Recommended for you

Solving molybdenum disulfide's 'thin' problem

14 hours ago

The promising new material molybdenum disulfide (MoS2) has an inherent issue that's steeped in irony. The material's greatest asset—its monolayer thickness—is also its biggest challenge.

Snowflakes become square with a little help from graphene

Mar 25, 2015

The breakthrough findings, reported in the journal Nature, allow better understanding of the counterintuitive behaviour of water at the molecular scale and are important for development of more efficient techno ...

Nanostructure complex materials modeling  

Mar 25, 2015

Materials with chemical, optical, and electronic properties driven by structures measuring billionths of a meter could lead to improved energy technologies—from more efficient solar cells to longer-lasting ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.