Artificial Nanoscale Cholesterol Carrier Targets Brain Tumors

Sep 11, 2006

Low-density lipoprotein, better known as LDL, is one of the chief villains involved in the development of coronary artery disease. But new research results suggest that for cancer patients with glioblastoma multiforme (GBM), the most common malignant brain tumor in adults, synthetic LDL-like nanoparticles could prove to be the vehicle of choice for delivering potent anticancer drugs to tumor cells while sparing healthy neighboring cells.

Writing in the International Journal of Pharmaceutics, a team of investigators led by Trudy Forte, Ph.D., at the Children’s Hospital of Oakland Research Institute, describes its development of a multicomponent nanoparticle that targets a cell-surface LDL receptor that is overproduced by glioblastoma cells, as well as by other tumor cells. Healthy brain cells, in contrast, have relatively low levels of the LDL receptor in their cell membranes.

To construct their nanoparticles, the investigators started with a mix of lipids, cholesterol, and a small, synthetic protein that contains two functional regions. One region acts as an LDL receptor binding region and the other as a lipid binding region that helps hold the nanoparticle together. Initial experiments confirmed that the resulting 10-nanometer diameter particles bound efficiently to the surface of GBM cells growing in culture and that they could prevent this binding using a compound known to inhibit the interaction of natural LDL particles with their receptor.

Using a fluorescent dye as a model drug, the researchers then showed that glioblastoma cells took up the synthetic nanoparticles. The investigators note that the small size of these synthetic nanoparticles make them suitable for delivery into the brain using a technique known as convection enhanced delivery. Natural LDL particles do not cross the blood-brain barrier.

This work is detailed in a paper titled, “Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme.” Investigators from the Lawrence Berkeley National Laboratory and the University of California, Berkeley, also participated in this study. This paper was published online in advance of print publication. An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Introducing the multi-tasking nanoparticle

add to favorites email to friend print save as pdf

Related Stories

Cell biology: Flushing out fats

Dec 19, 2012

The Wip1 protein is important for survival, but mutations that inactivate it carry some surprising features. "A lack of Wip1 results in an excessive immune reaction to infectious organisms, in some cases ...

An important genetic cardiovascular risk factor explained

Sep 07, 2010

New findings reported in the September issue of Cell Metabolism, a Cell Press publication, appear to explain why people who carry specific and common versions of a single gene are more likely to have high cholesterol and to ...

Preventing heart problems while keeping a cool head

Jul 26, 2010

Cholesterol influences the health of our hearts and blood vessels. Conventional treatment attempts to reduce the level of "bad" cholesterol, LDL cholesterol, in the blood plasma. The opposite approach, which involves increasing ...

Recommended for you

Introducing the multi-tasking nanoparticle

23 hours ago

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Tissue regeneration using anti-inflammatory nanomolecules

Aug 22, 2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Cut flowers last longer with silver nanotechnology

Aug 21, 2014

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Relaxing DNA strands by using nano-channels

Aug 20, 2014

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

User comments : 0