Roll-up laptop screens for truly portable computing

Sep 11, 2006
Roll-up laptop screens for truly portable computing
A mocked-up flexible display supported on one of Keith´s morphing structures.

Dr Keith Seffen, a lecturer in the Structures Group, University of Cambridge, has developed a range of unique solid structures that can change shape.

Known as "morphing" structures they can be used to produce many different configurations but without the need of complex parts or sophisticated manufacture.

Along with his co-workers, Dr Simon Guest and graduate student, Alex Norman, they are working on a range of applications, including re-usable packing, roll-up keyboards, and thin flexible displays for truly portable computing: a "mock-up" and its operation are shown in the photos, where an A5-sized flat screen snaps into a tube for compact carriage in a briefcase or pocket.

Roll-up laptop screens for truly portable computing
The display coiled up into a self-locking tube.

Keith considers the performance of structures from multiple viewpoints, in particular how to retain strength and stiffness while permitting large changes in shape. Typically, civil engineering structures are designed to be strong (safe) and stiff (immovable); when they are not, the consequences can be disastrous.

Writing in Proceedings of the Royal Society of London, Series A (DOI: 10.1098/rspa.2006.1750), he describes a class of structures that behave normally under the usual operating conditions, but when the demands upon them increase, their response softens in a prescribed manner, permitting large yet safe departures from the original shape before becoming stiff and self-locking in a new configuration.

Such behaviour is governed by the choice of material and initial shape of structure, and Keith combines these influences in a systematic manner for the first time, yielding the conditions required for morphing behaviour in a wide range of structures.

Assisted by Cambridge Enterprise, Keith and his team have filed a patent on the manufacture and operation of their morphing devices, and are actively seeking industrial collaboration for future development.

Source: University of Cambridge

Explore further: New research predicts when, how materials will act

add to favorites email to friend print save as pdf

Related Stories

Bringing designers and animators together

Feb 17, 2015

Aircraft designers and animators use different digital technologies to achieve the same goal: creating a three-dimensional image that can be manipulated. But a new method that links the two could vastly speed ...

Protein threshold linked to Parkinson's disease

Feb 02, 2015

The circumstances in which a protein closely associated with Parkinson's Disease begins to malfunction and aggregate in the brain have been pinpointed in a quantitative manner for the first time in a new ...

Recommended for you

New filter could advance terahertz data transmission

23 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

23 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.