Roll-up laptop screens for truly portable computing

Sep 11, 2006
Roll-up laptop screens for truly portable computing
A mocked-up flexible display supported on one of Keith´s morphing structures.

Dr Keith Seffen, a lecturer in the Structures Group, University of Cambridge, has developed a range of unique solid structures that can change shape.

Known as "morphing" structures they can be used to produce many different configurations but without the need of complex parts or sophisticated manufacture.

Along with his co-workers, Dr Simon Guest and graduate student, Alex Norman, they are working on a range of applications, including re-usable packing, roll-up keyboards, and thin flexible displays for truly portable computing: a "mock-up" and its operation are shown in the photos, where an A5-sized flat screen snaps into a tube for compact carriage in a briefcase or pocket.

Roll-up laptop screens for truly portable computing
The display coiled up into a self-locking tube.

Keith considers the performance of structures from multiple viewpoints, in particular how to retain strength and stiffness while permitting large changes in shape. Typically, civil engineering structures are designed to be strong (safe) and stiff (immovable); when they are not, the consequences can be disastrous.

Writing in Proceedings of the Royal Society of London, Series A (DOI: 10.1098/rspa.2006.1750), he describes a class of structures that behave normally under the usual operating conditions, but when the demands upon them increase, their response softens in a prescribed manner, permitting large yet safe departures from the original shape before becoming stiff and self-locking in a new configuration.

Such behaviour is governed by the choice of material and initial shape of structure, and Keith combines these influences in a systematic manner for the first time, yielding the conditions required for morphing behaviour in a wide range of structures.

Assisted by Cambridge Enterprise, Keith and his team have filed a patent on the manufacture and operation of their morphing devices, and are actively seeking industrial collaboration for future development.

Source: University of Cambridge

Explore further: Asteroid impacts on Earth make structurally bizarre diamonds

add to favorites email to friend print save as pdf

Related Stories

Cohesin molecule safeguards cell division

6 hours ago

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Recommended for you

How the hummingbird achieves its aerobatic feats

16 hours ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

New terahertz device could strengthen security

Nov 21, 2014

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

Nov 21, 2014

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.