'World's smallest controlled heat source' studies explosives at the nanoscale

Sep 08, 2006
'World's smallest controlled heat source' studies explosives at the nanoscale
Georgia Tech Assistant Professor William King displays an experimental apparatus for nanoscale thermal analysis. Credit: Georgia Tech Photo: Gary Meek

Using nanometer scale analysis techniques and quantities too small to explode, researchers have mapped the temperature and length-sale factors that make energetic materials – otherwise known as explosives – behave the way they do.

Using the "world's smallest controlled heat source" – a tiny atomic-force microscope (AFM) cantilever – scientists from the Georgia Institute of Technology and Texas Tech University have developed a new way to study explosives that have nanometer-scale features. The technique provides new information about such phenomena as melting, evaporation and decomposition of explosives at the smallest length scales. Because the performance of these materials depends heavily on nanometer-scale factors such as crystal size and voids between crystals, the research could ultimately lead to safer explosives and better control over how they work.

Dubbed "nanodectonics," the research was described in the August 29 online issue of the American Chemical Society journal Nano Letters.

"Scientists would like to design energetic materials with specific responses, with a given temperature producing a given burn rate, for example," explained William King, an assistant professor in the Georgia Institute of Technology's School of Mechanical Engineering. "Before our measurements, no one was able to interrogate these properties at the nanometer scale. With the data we have generated, it is possible to build physics-based models of how these materials behave rather than relying on empirical relationships seen at the macro scale."

'World's smallest controlled heat source' studies explosives at the nanoscale
Lithographic marks written into the PETN film using the heated AFM tip. Credit: Courtesy William King

Using an AFM tip capable of heating spots as small as a few nanometers in diameter, the researchers performed nanometer-scale thermal analysis on thin films of a polycrystalline energetic material known as Pentaerythritol Tetranitrate (PETN). They melted, evaporated and decomposed the PETN at length scales ranging from 100 nanometers to a few micrometers.

"We have shown that we can control the morphology of energetic materials on the nanoscale, and also measure nanoscale properties of these materials," said Brandon Weeks, an assistant professor in the Department of Chemical Engineering at Texas Tech University. "The hope is that since very small amounts of the material are needed for study, we can measure the properties in a very safe manner and extrapolate the information to bulk properties. Thus far, there has been very little research into the nanoscale properties of energetic materials outside of military applications."

For instance, voids between crystals of energetic materials are believed to play an important role in the rapid decomposition – or explosion – of the materials. When exposed to an initiation stimulus, these voids become "hot spots" and act as ignition sites that grow in temperature, size and pressure, leading to the detonation processes that make explosives useful in construction, mining and other commercial activities.

The formation of these voids is not directly controlled during materials synthesis. However, a better understanding of explosives at the nanoscale could lead to better control of the synthesis process – and better explosive materials, Weeks said.

"Ideally, we want to control the nanoscale properties of energetic materials to understand the physics at short length scales and make the materials safer," he added. "Perhaps we could engineer features into a material like PETN that would make it sensitive to a certain initiation stimulus. If the correct stimulus were not used, then the material would no longer behave like an explosive."

'World's smallest controlled heat source' studies explosives at the nanoscale
Close-up of silicon heater-cantilever fabricated at Georgia Insitute of Technology. Image courtesy of William King.

Experimentally, the researchers used their heated AFM cantilever to apply heat to a thin film of PETN. By varying the temperature as the cantilever was scanned across the film, the researchers were able to map the melting, evaporation and decomposition rates as a function of temperature, and observe their effects.

"By controlling the way we scan the tip over the surface, we can cause the material to re-condense into its solid form," King said. "When it re-condenses, it has fundamentally different crystalline structure. That gives us control over the crystal structure on the nanometer functional length scale."

The crystalline structure of energetic materials changes over time, and the researchers measured those changes during their study of the PETN films. For instance, the crystals become larger over time, which changes the materials properties and can make explosives less effective as they age.

PETN is a high explosive used in mining, construction and the defense industries, but because the researchers worked with such small quantities of it, there was no danger of an explosion in their lab. Weeks said the samples they studied were just a thousandth of the amount necessary to support an explosion. He estimated that the amount of material removed by the cantilever during the tests amounted to about 400 zeptograms. (A zeptogram is one-sextillionth of a gram).

The silicon-based cantilevers, which are fabricated in King's research group, include a built-in electrical resistance heater than can produce temperatures of up to 1,000 degrees Celsius. The temperature of the probe can be controlled to within approximately one degree Celsius.

Beyond energetic materials, the analytical technique made possible by the heated AFM cantilever could be used to study and improve other materials.

"We would expect other crystalline or polycrystalline materials to generally behave in a similar fashion, although the specifics would be unique for each material," King added. "We could use this same technique to study small-scale thermal properties of a whole suite of materials that we haven't been able to measure before. If we can get to know these materials at the nanometer scale, that would allow us to design them at larger scales."

Source: Georgia Institute of Technology

Explore further: For electronics beyond silicon, a new contender emerges

add to favorites email to friend print save as pdf

Related Stories

Electric sparks may alter evolution of lunar soil

Aug 21, 2014

The moon appears to be a tranquil place, but modeling done by University of New Hampshire and NASA scientists suggests that, over the eons, periodic storms of solar energetic particles may have significantly ...

Inside the cell, an ocean of buffeting waves

Aug 14, 2014

Conventional wisdom holds that the cytoplasm of mammalian cells is a viscous fluid, with organelles and proteins suspended within it, jiggling against one another and drifting at random. However, a new biophysical ...

Inexpensive flexible fiber perovskite solar cells

Aug 04, 2014

(Phys.org) —Textile solar cells are an ideal power source for small electronic devices incorporated into clothing. In the journal Angewandte Chemie, Chinese scientists have now introduced novel solar cells ...

Recommended for you

For electronics beyond silicon, a new contender emerges

6 hours ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

8 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

8 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

User comments : 0