Global changes alter the timing of plant growth, scientists say

Sep 04, 2006

Any gardener knows--different plant species mature at different times. Scientists studying plant communities in natural habitats call this phenomenon "complementarity." It allows many species to co-exist because it reduces overlap in the time period when species compete for limited resources. Now, in a study posted online the week of Sept. 4 in the Proceedings of the National Academy of Sciences, ecologists working at Stanford's Jasper Ridge Biological Preserve report evidence that climate change may alter this delicate balance.

"In the natural world, species have evolved to be finely attuned to the seasons--timing is everything," said lead author Elsa Cleland, who performed this research as part of her doctoral dissertation at Stanford and is now a postdoctoral fellow at the National Center for Ecological Analysis and Synthesis in Santa Barbara, Calif. "If climate change alters the timing of plant activity, then it could have a domino effect, impacting the feeding, breeding or migration patterns of the animals that rely on particular plant species."

Cleland's co-authors include Nona R. Chiariello, research coordinator of the Jasper Ridge Biological Preserve; Scott Loarie, who assisted with this research while a Stanford undergraduate; Christopher B. Field, director of the Carnegie Institution's Department of Global Ecology (located on the Stanford campus) and faculty director of Jasper Ridge Biological Preserve, and Harold A. Mooney, the Paul S. Achilles Professor of Environmental Biology at Stanford.

The findings are part of the ongoing Jasper Ridge Global Change Experiment, launched in 1998 and designed to demonstrate how a typical California grassland ecosystem may respond to future global environmental changes. Researchers from Stanford and the Carnegie Institution's Department of Global Ecology conducted the experiment in about two fenced-off acres of the 1,189-acre Jasper Ridge Biological Preserve. The experiment was designed to simulate environmental conditions within the range that climate experts predict may exist 100 years from now--a doubling of atmospheric carbon dioxide; a temperature rise of 2 degrees Fahrenheit; a 50 percent increase in precipitation; and increased nitrogen deposition--as a likely byproduct of fossil-fuel burning.

Scientists applied each of the four experimental treatments--elevated carbon dioxide, warming, increased precipitation and nitrogen deposition--to intact grassland plots both singly and in all possible combinations. The experiment included control plots that did not receive any treatments. Each of 16 possible scenarios was replicated eight times to allow the researchers to tease apart the separate influences of factors and test the statistical significance of their results. Data reported in this study were obtained from 1999 through 2003.

"Under today's conditions, grasses flower early in the growing season and wildflowers flower later, but when we increased the concentration of carbon dioxide to simulate future conditions, the two groups flowered at the same time," Cleland said.

Early spring

In recent decades, scientists have observed accelerated springtime developmental activity in many plant and animal species and have assumed it was a response to global warming. In the experiment, researchers found that warming accelerated springtime flowering of all species. But they were surprised to find differing responses to elevated carbon dioxide and nitrogen deposition: Wildflowers responded to these changes by flowering earlier, while the grasses flowered later. This caused the two groups to overlap in their seasonality, where under current conditions they flower at separate times.

Consequences could be significant, points out co-author Loarie: "If plant species overlap more in the future because their timing is altered by global changes, it could lead to decreases in local plant diversity and negatively impact animals that depend on those plants."

Satellite images in recent years have revealed that some regions of the globe are "greening" earlier in the spring--another signal that the Earth is responding to overall warming. The results of this study also showed that plant growth--as evidenced by peak "greenness"--occurred earlier in the growing season when the grassland was exposed to warming, simulating future conditions.

But plant growth was delayed by elevated carbon dioxide, consistent with the fact that grasses--which make up the majority of plants in this system--were flowering later. "Unless the growing season is extended, slower plant growth under elevated carbon dioxide could reduce the overall productivity of the ecosystem," said Cleland.

Said Mooney, a founder of the Jasper Ridge Global Change Experiment: "This research shows that warming is just one aspect of global change and highlights the surprising ways in which natural communities may respond to changing environmental conditions."

Source: Stanford University

Explore further: Hopes, fears, doubts surround Cuba's oil future

add to favorites email to friend print save as pdf

Related Stories

The RV Investigator's role in marine science

Dec 12, 2014

We know more about the surface of the moon than we do about our deepest oceans, and only 12% of the ocean floor within Australia's Exclusive Economic Zone has so far been mapped.

With experience, people can tell bears apart

Dec 10, 2014

Studying the social interaction of bears through the use of camera traps and visual observations requires that humans be able to tell individuals apart. A study done using volunteers to study the vulnerable Andean bear indicates ...

Wetlands more vulnerable to invasives as climate changes

Dec 09, 2014

In the battle between native and invasive wetland plants, a new Duke University study finds climate change may tip the scales in favor of the invaders—but it's going to be more a war of attrition than a frontal assault.

Recommended for you

Hopes, fears, doubts surround Cuba's oil future

9 hours ago

One of the most prolific oil and gas basins on the planet sits just off Cuba's northwest coast, and the thaw in relations with the United States is giving rise to hopes that Cuba can now get in on the action.

New challenges for ocean acidification research

Dec 19, 2014

Over the past decade, ocean acidification has received growing recognition not only in the scientific area. Decision-makers, stakeholders, and the general public are becoming increasingly aware of "the other carbon dioxide ...

Compromises lead to climate change deal

Dec 19, 2014

Earlier this month, delegates from the various states that make up the UN met in Lima, Peru, to agree on a framework for the Climate Change Conference that is scheduled to take place in Paris next year. For ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.