How-to book published on laser beam-shaping applications

Oct 27, 2005
How-to book published on laser beam-shaping applications

Following up on their well-received first book, Laser Beam Shaping: Theory and Techniques, Sandia National Laboratories researchers Fred Dickey and Scott Holswade have edited (with David Shealy of the University of Alabama at Birmingham) a compact new volume, Laser Beam Shaping Applications.

The attractively packaged, 357-page volume offers readers the thoughts of 19 prominent practitioners who share their in-depth knowledge of how to shape laser beams to optimize their utility and improve their future development.

Contributors hail from sites as diverse as Moscow, Pretoria, Rochester, and Albuquerque.

In nine illustrated chapters, the authors — leaders in their respective specialties — discuss how to improve illuminators for microlithography, array-type laser printing systems, and excimer laser image systems, as well as optical data storage, isotope separation, shaping via flexible mirrors, and spectral control of spatially dispersive lasers. There is also a review of the modern field of beam-shaping.

The final chapter contains a history of beam shaping that began thousands of years ago with Assyrians in northern Iraq who had developed “a small oval, polished rock crystal in the shape of a plano-convex lens about one-quarter inch thick.” The chapter also discusses the contributions of Archimedes, who is said to have arranged parabolic mirrors that would quickly sink wooden ships by burning holes in them.

Extensive references offer opportunities for more in-depth study. The book, published by the Taylor & Francis Group, is 102nd in its optical science and engineering titles.

Recognizing the remarkable lack of acknowledgments to engineers in the modern world (despite the fact that their achievements are everywhere), the authors dedicate their second volume “to the many unrecognized researchers who developed key methods and applications of beam shaping. They innovated quietly to maintain legitimate corporate advantage, so their names are largely unknown.”

Soure: Sandia National Laboratories

Explore further: Mapping the optimal route between two quantum states

add to favorites email to friend print save as pdf

Related Stories

Nanophotonics experts create powerful molecular sensor

Jul 15, 2014

(Phys.org) —Nanophotonics experts at Rice University have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. Newly published tests found the device could ...

Highway for ultracold atoms in light crystals

Jul 09, 2014

When a superconductor is exposed to a magnetic field, a current on its surface appears which creates a counter field that cancels the magnetic field inside the superconductor. This phenomenon, known as "Meissner-Ochsenfeld ...

X-ray imaging reveals a complex core

Jul 04, 2014

Macromolecular complexes composed of self-assembling proteins and nucleic acids hold promise for a wide range of applications, including drug delivery, sensing and molecular electronics. Scientists have developed ...

Recommended for you

Mapping the optimal route between two quantum states

17 hours ago

As a quantum state collapses from a quantum superposition to a classical state or a different superposition, it will follow a path known as a quantum trajectory. For each start and end state there is an optimal ...

Spin-based electronics: New material successfully tested

21 hours ago

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

Verifying the future of quantum computing

23 hours ago

Physicists are one step closer to proving the reliability of a quantum computer – a machine which promises to revolutionise the way we trade over the internet and provide new tools to perform powerful simulations.

A transistor-like amplifier for single photons

Jul 29, 2014

Data transmission over long distances usually utilizes optical techniques via glass fibres – this ensures high speed transmission combined with low power dissipation of the signal. For quite some years ...

User comments : 0