How-to book published on laser beam-shaping applications

Oct 27, 2005
How-to book published on laser beam-shaping applications

Following up on their well-received first book, Laser Beam Shaping: Theory and Techniques, Sandia National Laboratories researchers Fred Dickey and Scott Holswade have edited (with David Shealy of the University of Alabama at Birmingham) a compact new volume, Laser Beam Shaping Applications.

The attractively packaged, 357-page volume offers readers the thoughts of 19 prominent practitioners who share their in-depth knowledge of how to shape laser beams to optimize their utility and improve their future development.

Contributors hail from sites as diverse as Moscow, Pretoria, Rochester, and Albuquerque.

In nine illustrated chapters, the authors — leaders in their respective specialties — discuss how to improve illuminators for microlithography, array-type laser printing systems, and excimer laser image systems, as well as optical data storage, isotope separation, shaping via flexible mirrors, and spectral control of spatially dispersive lasers. There is also a review of the modern field of beam-shaping.

The final chapter contains a history of beam shaping that began thousands of years ago with Assyrians in northern Iraq who had developed “a small oval, polished rock crystal in the shape of a plano-convex lens about one-quarter inch thick.” The chapter also discusses the contributions of Archimedes, who is said to have arranged parabolic mirrors that would quickly sink wooden ships by burning holes in them.

Extensive references offer opportunities for more in-depth study. The book, published by the Taylor & Francis Group, is 102nd in its optical science and engineering titles.

Recognizing the remarkable lack of acknowledgments to engineers in the modern world (despite the fact that their achievements are everywhere), the authors dedicate their second volume “to the many unrecognized researchers who developed key methods and applications of beam shaping. They innovated quietly to maintain legitimate corporate advantage, so their names are largely unknown.”

Soure: Sandia National Laboratories

Explore further: Flatland, we hardly knew ye: Unique 1-D metasurface acts as polarized beam splitter, allows novel form of holography

add to favorites email to friend print save as pdf

Related Stories

What is the geometry of the universe?

Sep 24, 2014

One of the big questions in cosmology regards the shape of the universe. "Shape" in this case is not the distribution of galaxies, but rather the shape of space and time itself. In general relativity, space ...

How Paramecium protozoa claw their way to the top

Sep 19, 2014

The ability to swim upwards – towards the sun and food supplies – is vital for many aquatic microorganisms. Exactly how they are able to differentiate between above and below in often murky waters is ...

Ultracold atoms juggle spins with exceptional symmetry

Sep 03, 2014

The physical behavior of materials is strongly governed by the many electrons which can interact and move inside any solid. While an individual electron is a very simple object, carrying only mass, electric ...

Recommended for you

Three-dimensional metamaterials with a natural bent

12 hours ago

Metamaterials, a hot area of research today, are artificial materials engineered with resonant elements to display properties that are not found in natural materials. By organizing materials in a specific way, scientists ...

Scientists develop compact medical imaging device

Oct 23, 2014

Scientists at the MIRA research institute, in collaboration with various companies, have developed a prototype of a handy device that combines echoscopy (ultrasound) with photoacoustics. Combining these two ...

User comments : 0