Gold Nanoparticles Prove to Be Hot Stuff

Aug 31, 2006
Gold Nanoparticles Prove to Be Hot Stuff
A gold nanobead, trapped with 205 milliwatts of infrared laser light, heats up to about 75 degrees C or 167 degrees F (shown in dark red) and the temperature in the surrounding area gradually cools off (the purple area is about 40 degrees C or 104 degrees F). Credit: Yeonee Seol/JILA

Gold nanoparticles are highly efficient and sensitive “handles” for biological molecules being manipulated and tracked by lasers, but they also can heat up fast—by tens of degrees in just a few nanoseconds—which could either damage the molecules or help study them, according to scientists at JILA, a joint institute of the National Institute of Standards and Technology (NIST) and University of Colorado at Boulder.

Biophysicists often study nanoscale and even picoscale mechanics by using lasers to both apply force to and track the position of fragile biomolecules such as DNA or protein by manipulating a tiny sphere—typically polystyrene—attached to the molecule. The JILA team would like to find new microsphere materials that can be trapped by laser radiation pressure more efficiently, which would enable faster measurements and detection of smaller motions at the same laser power.

As described in the Aug. 15 issue of Optics Letters, the JILA team demonstrated that 100-nanometer-wide gold beads, as expected because of their metallic nature, can be trapped and detected six times more easily than polystyrene particles of a similar size.

However, the scientists also found that gold absorbs light and heats up quickly, by a remarkable 266 degrees (Celsius) per watt of laser power, at the wavelength most often used in optical traps. Unless very low laser power is used, the heat could damage the molecules under study. Thus, gold beads would not be useful for temperature-sensitive experiments or applying force to molecules. But the heating effect could be useful in raising local temperatures in certain experiments, such as heating a protein just enough to allow scientists to watch it unfold, the paper suggests.

The work was supported by a W.M. Keck grant in the RNA Sciences, a Burroughs Wellcome Fund Career Award in the Biomedical Sciences, a National Institutes of Health training grant, the National Science Foundation, and NIST.

Citation: Y. Seol, A.E. Carpenter, T.T. Perkins. 2006. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Optics Letters. Aug. 15.

Credit: NIST

Explore further: Improving printed electronics process and device characterization

add to favorites email to friend print save as pdf

Related Stories

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Laser makes microscopes way cooler

Aug 15, 2014

(Phys.org) —Laser physicists have found a way to make atomic-force microscope probes 20 times more sensitive and capable of detecting forces as small as the weight of an individual virus.

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

Nanophotonics experts create powerful molecular sensor

Jul 15, 2014

(Phys.org) —Nanophotonics experts at Rice University have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. Newly published tests found the device could ...

Recommended for you

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 0