New polymer-coating process developed

Aug 29, 2006

As gas prices continue to soar, the Navy will be eager to learn of research underway at Rutgers University--Camden. "Barnacles that attach to naval ships are a huge cost to the Navy. Imagine if you drove a car with a parachute attached; this extra drag force requires more gas," says Daniel Bubb, an assistant professor of physics at Rutgers-Camden, who has developed a new method for coating polymers.

Used in a variety of industries, including protecting battleships from freeloading barnacles, polymers are materials made from long chains of molecules.

Thanks to a $129,463 National Science Foundation grant in its third year, Bubb and his team (including a post-doctoral fellow, undergraduate, and graduate students) are refining this new coating process. By employing a pulsed laser deposition technique, a high-power laser is focused onto a target material in a vacuum chamber, creating a plume of vaporized material. The object that is to be coated is placed in the path of the vapor. The Rutgers-Camden research team then tunes the laser to a specific vibrational mode of the polymer to ease the vaporization process and limit photochemical and photothermal damage.

This research will benefit many industries that rely solely on the most commonly used method of spin-coating, a viable technique for certain applications but inefficient for coating devices that are too large or small for its apparatus.

"With spin-coating, it's difficult to layer and adhesion can be a problem" says Bubb, whose research also could improve biocompatibility in devices that require coating only on very specific and sensitive areas.

The Rutgers-Camden researcher also has advanced coating polymers that are too thermally sensitive by treating materials with a solvent before using the laser. This aspect of the research is funded through a $35,000 Cottrell College Science Award.

This past summer undergraduate Elijah Brookes of Haddonfield and post-baccalaureate student Brian Collins of Voorhees joined Bubb on visits to Vanderbilt University, where the Rutgers-Camden research team tested their findings at the W.M. Keck Vanderbilt Free-electron Laser Center.

Bubb's team establishes preliminary findings on the four lasers housed at Bubb's lab at Rutgers-Camden – three are solid state laser systems, the fourth laser allows the group to tune to specific vibrational bands in the material they study. While the free-electron laser at Vanderbilt provides exceptional power and wavelength range for the Rutgers-Camden student research team to more definitively pin down their data.

"Working with Dr. Bubb has allowed me to get involved in the physics department and see how it is to really work in a lab setting. My experience will surely benefit me as I graduate," says Brookes, a junior physics major at Rutgers-Camden.

"We don't limit our conversations to strictly laser optics. So, if I have a question on any branch of physics or any branch of science even, Dr. Bubb is there to answer. That's been amazing to me," says Collins, who is currently applying to medical school.

Source: Rutgers, the State University of New Jersey

Explore further: Pseudoparticles travel through photoactive material

Related Stories

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.