Cassiopeia A - The colourful aftermath of a violent stellar death

Aug 29, 2006
Cassiopeia A - The colourful aftermath of a violent stellar death
Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration. Acknowledgement: Robert A. Fesen (Dartmouth College, USA) and James Long (ESA/Hubble)

A new image taken with the NASA/ESA Hubble Space Telescope provides a detailed look at the tattered remains of a supernova explosion known as Cassiopeia A (Cas A). It is the youngest known remnant from a supernova explosion in the Milky Way. The new Hubble image shows the complex and intricate structure of the star’s shattered fragments.

The image is a composite made from 18 separate images taken using Hubble’s Advanced Camera for Surveys (ACS), and it shows the Cas A remnant as a broken ring of bright filamentary and clumpy stellar ejecta. These huge swirls of debris glow with the heat generated by the passage of a shockwave from the supernova blast. The various colours of the gaseous shards indicate differences in chemical composition. Bright green filaments are rich in oxygen, red and purple are sulphur, and blue are composed mostly of hydrogen and nitrogen.

A supernova such as the one that resulted in Cas A is the explosive demise of a massive star that collapses under the weight of its own gravity. The collapsed star then blows its outer layers into space in an explosion that can briefly outshine its entire parent galaxy. Cas A is relatively young, estimated to be only about 340 years old. Hubble has observed it on several occasions to look for changes in the rapidly expanding filaments.

In the latest observing campaign, two sets of images were taken, separated by nine months. Even in that short time, Hubble’s razor-sharp images can observe the expansion of the remnant. Comparison of the two image sets shows that a faint stream of debris seen along the upper left side of the remnant is moving with high speed - up to 50 million kilometres per hour (fast enough to travel from Earth to the Moon in 30 seconds!).

Cas A is located ten thousand light-years away from Earth in the constellation of Cassiopeia. Supernova explosions are the main source of elements more complex than oxygen, which are forged in the extreme conditions produced in these events. The analysis of such a nearby, relatively young and fresh example is extremely helpful in understanding the evolution of the Universe.

Source: ESA/Hubble Information Centre

Explore further: Toothpaste fluorine formed in stars

add to favorites email to friend print save as pdf

Related Stories

NuSTAR telescope takes first peek into core of supernova

Feb 19, 2014

(Phys.org) —Astronomers have peered for the first time into the heart of an exploding star in the final minutes of its existence. The feat by the high-energy X-ray satellite NuSTAR provides details of the ...

Image: Exploring the third dimension of Cassiopeia A

Nov 18, 2013

(Phys.org) —One of the most famous objects in the sky - the Cassiopeia A supernova remnant - will be on display like never before, thanks to NASA's Chandra X-ray Observatory and a new project from the Smithsonian ...

NASA's NuSTAR catches black holes in galaxy web

Jan 08, 2013

(Phys.org)—NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, set its X-ray eyes on a spiral galaxy and caught the brilliant glow of two black holes lurking inside.

Radioactive decay of titanium powers supernova remnant

Oct 17, 2012

(Phys.org)—The first direct detection of radioactive titanium associated with supernova remnant 1987A has been made by ESA's Integral space observatory. The radioactive decay has likely been powering the ...

Recommended for you

Toothpaste fluorine formed in stars

20 hours ago

The fluorine that is found in products such as toothpaste was likely formed billions of years ago in now dead stars of the same type as our sun. This has been shown by astronomers at Lund University in Sweden, ...

Swirling electrons in the whirlpool galaxy

Aug 20, 2014

The whirlpool galaxy Messier 51 (M51) is seen from a distance of approximately 30 million light years. This galaxy appears almost face-on and displays a beautiful system of spiral arms.

A spectacular landscape of star formation

Aug 20, 2014

This image, captured by the Wide Field Imager at ESO's La Silla Observatory in Chile, shows two dramatic star formation regions in the Milky Way. The first, on the left, is dominated by the star cluster NGC ...

Exoplanet measured with remarkable precision

Aug 19, 2014

Barely 30 years ago, the only planets astronomers had found were located right here in our own solar system. The Milky Way is chock-full of stars, millions of them similar to our own sun. Yet the tally ...

User comments : 0