Combined Forces Of Physics And Medicine To Investigate Hidden Toxity

Oct 26, 2005

A physicist and a medical researcher at the University of Leicester have received a grant of £100,000 from the Engineering and Physical Sciences Research Council to look at possible toxic damage from inhaled nanoparticles used for a range of everyday purposes.

The small size of nanoparticles in the size range 5-100 nm gives many novel and useful properties and they are used in applications as diverse as face creams, plastics, medical imaging, novel drug therapies and magnetic recording. Such particles are increasingly manufactured and released into the environment on industrial scales.

However, there is growing concern that the very same properties that make them so useful may also lead to enhanced toxicity if the particles are breathed in. The particles are so small - 100,000 particles laid end-to-end would only stretch a few millimetres - that it is not clear how the body's normal defence mechanisms will cope with them.

By harnessing their combined expertise in physics and medicine, Dr Paul Howes, Department of Physics & Astronomy, and Dr Jonathan Grigg, Department of Infection, Immunity and Inflammation, will research possible toxic damage from inhaled nanoparticles.

Dr Howes and Dr Grigg will produce macrophages from human blood monocytes and expose them, in vitro, to an aerosol of metal nanoparticles, measuring any toxic damage to their DNA. Precise control over the size, chemical composition and dose of particles with enable them to determine whether there is a correlation between size and toxicity. The potential for genotoxicity (and therefore increased vulnerability to lung cancer) is an important factor when setting national air quality guidelines for particles. It is envisaged that this exposure technique, which more closely mimics "real life" exposure, will allow genotoxicity to be assessed for a wide range of manufactured nanoparticles.

Monocyte-derived macrophages were chosen since airway macrophages are a part of the body's immune system and normally reside deep in the lungs where they form the first line of defence against inhaled particles.

Dr Howes commented: "I am excited at the potential of this collaborative research that will enable us to study the crucially important question of nanoparticle toxicology. The new aerosol spectrometer purchase from the grant, combined with the University's existing microscopy facility, will give us unique ability to characterise and control the aerosol to answer fundamental questions about the interaction of nanoparticles with the human immune system."

Dr Grigg said: "This research may have profound implications for nanotechnology, if exposure of lung cells to low levels of highly reactive particles induces significant genotoxicity."

Source: University of Leicester

Explore further: Tiny graphene drum could form future quantum memory

add to favorites email to friend print save as pdf

Related Stories

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Venom gets good buzz as potential cancer-fighter

Aug 11, 2014

Bee, snake or scorpion venom could form the basis of a new generation of cancer-fighting drugs, scientists will report here today. They have devised a method for targeting venom proteins specifically to malignant cells while ...

Self-assembly of gold nanoparticles into small clusters

Aug 04, 2014

Researchers at HZB in cooperation with Humboldt-Universitaet zu Berlin have made an astonishing observation: they were investigating the formation of gold nanoparticles in a solvent and observed that the ...

Recommended for you

Tiny graphene drum could form future quantum memory

8 hours ago

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

User comments : 0