Combined Forces Of Physics And Medicine To Investigate Hidden Toxity

Oct 26, 2005

A physicist and a medical researcher at the University of Leicester have received a grant of £100,000 from the Engineering and Physical Sciences Research Council to look at possible toxic damage from inhaled nanoparticles used for a range of everyday purposes.

The small size of nanoparticles in the size range 5-100 nm gives many novel and useful properties and they are used in applications as diverse as face creams, plastics, medical imaging, novel drug therapies and magnetic recording. Such particles are increasingly manufactured and released into the environment on industrial scales.

However, there is growing concern that the very same properties that make them so useful may also lead to enhanced toxicity if the particles are breathed in. The particles are so small - 100,000 particles laid end-to-end would only stretch a few millimetres - that it is not clear how the body's normal defence mechanisms will cope with them.

By harnessing their combined expertise in physics and medicine, Dr Paul Howes, Department of Physics & Astronomy, and Dr Jonathan Grigg, Department of Infection, Immunity and Inflammation, will research possible toxic damage from inhaled nanoparticles.

Dr Howes and Dr Grigg will produce macrophages from human blood monocytes and expose them, in vitro, to an aerosol of metal nanoparticles, measuring any toxic damage to their DNA. Precise control over the size, chemical composition and dose of particles with enable them to determine whether there is a correlation between size and toxicity. The potential for genotoxicity (and therefore increased vulnerability to lung cancer) is an important factor when setting national air quality guidelines for particles. It is envisaged that this exposure technique, which more closely mimics "real life" exposure, will allow genotoxicity to be assessed for a wide range of manufactured nanoparticles.

Monocyte-derived macrophages were chosen since airway macrophages are a part of the body's immune system and normally reside deep in the lungs where they form the first line of defence against inhaled particles.

Dr Howes commented: "I am excited at the potential of this collaborative research that will enable us to study the crucially important question of nanoparticle toxicology. The new aerosol spectrometer purchase from the grant, combined with the University's existing microscopy facility, will give us unique ability to characterise and control the aerosol to answer fundamental questions about the interaction of nanoparticles with the human immune system."

Dr Grigg said: "This research may have profound implications for nanotechnology, if exposure of lung cells to low levels of highly reactive particles induces significant genotoxicity."

Source: University of Leicester

Explore further: How we can substitute critical raw materials in catalysis, electronics and photonics

add to favorites email to friend print save as pdf

Related Stories

Golden vehicle for drug delivery has hidden costs

Feb 18, 2015

One of the biggest ideas in treating disease involves material so small it isn't even visible. Miniscule gold particles – the size of several atoms – are being touted as vehicles to send drugs exactly ...

Better batteries inspired by lowly snail shells

Feb 11, 2015

Scientists are using biology to improve the properties of lithium ion batteries. Researchers at the University of Maryland, Baltimore County (UMBC) have isolated a peptide, a type of biological molecule, ...

Nanovectors combine cancer imaging and therapy

Feb 09, 2015

Researchers at Imperial College London and the Laboratoire de chimie de la matière condensée de Paris (CNRS/Collège de France/UPMC) have designed and developed hybrid gold-silica nanoparticles, which are ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.