Huge Black Holes Stifle Star Formation

Aug 23, 2006
Huge Black Holes Stifle Star Formation
This artist's concept depicts a supermassive black hole at the center of a galaxy. The blue color here represents radiation pouring out from material very close to the black hole. The grayish structure surrounding the black hole, called a torus, is made up of gas and dust. Image credit: NASA/JPL-Caltech

Supermassive black holes in some giant galaxies create such a hostile environment, they shut down the formation of new stars, according to NASA Galaxy Evolution Explorer findings published in the August 24 issue of Nature.

The orbiting observatory surveyed more than 800 nearby elliptical galaxies of various sizes. An intriguing pattern emerged: the more massive, or bigger, the galaxy, the less likely it was to have young stars. Because bigger galaxies are known to have bigger black holes, astronomers believe the black holes are responsible for the lack of youthful stars.

"Supermassive black holes in these giant galaxies create unfriendly places for stars to form," said Dr. Sukyoung K. Yi of Yonsei University in Seoul, Korea, who led the research team. "If you want to find lots of young stars, look to the smaller galaxies."

Previously, scientists had predicted that black holes might have dire consequences for star birth, but they didn't have the tools necessary to test the theory. The Galaxy Evolution Explorer, launched in 2003, is well-suited for this research. It is extremely sensitive to the ultraviolet radiation emitted by even low numbers of young stars.

Huge Black Holes Stifle Star Formation
This diagram illustrates the trend observed by the Galaxy Evolution Explorer: the biggest galaxies and black holes (shown in upper right corner) are less likely to have any observable star formation (red) than the smaller galaxies with smaller black holes. This is evidence that black holes can create environments unsuitable for stellar birth. Image credit: NASA/JPL-Caltech/Yonsei University

Black holes are monstrous heaps of dense matter at the centers of galaxies. Over time, a black hole and its host galaxy will grow in size, but not always at the same rate.

Yi and his collaborators found evidence that the black holes in elliptical galaxies bulk up to a critical mass before putting a stop to star formation. In other words, once a black hole reaches a certain size relative to its host galaxy, its harsh effects become too great for new stars to form. According to this "feedback" theory, the growth of a black hole slows the development of not only stars but of its entire galaxy.

How does a black hole do this? There are two possibilities. First, jets being blasted out of black holes could blow potential star-making fuel, or gas, out of the galaxy center, where stars tend to arise.

The second theory relates to the fact that black holes drag surrounding gas onto them, which heats the gas. The gas becomes so hot that it can no longer clump together and collapse into stars.

Source: Jet Propulsion Laboratory/NASA

Explore further: NASA's Chandra finds intriguing member of black hole family tree

add to favorites email to friend print save as pdf

Related Stories

Telescopes give shape to furious black hole winds

Feb 19, 2015

NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA's (European Space Agency) XMM-Newton telescope are showing that fierce winds from a supermassive black hole blow outward in all directions—a ...

Planets can alter each other's climates over eons

Feb 20, 2015

A new study sheds light on how exoplanets in tightly-packed solar systems interact with each other gravitationally by affecting one another's climates and their abilities to support alien life.

Dark matter guides growth of supermassive black holes

Feb 18, 2015

Every massive galaxy has a black hole at its center, and the heftier the galaxy, the bigger its black hole. But why are the two related? After all, the black hole is millions of times smaller and less massive ...

Black hole chokes on a swallowed star

Jan 26, 2015

A five-year analysis of an event captured by a tiny telescope at McDonald Observatory and followed up by telescopes on the ground and in space has led astronomers to believe they witnessed a giant black hole ...

Recommended for you

New insight found in black hole collisions

9 hours ago

New research by an astrophysicist at The University of Texas at Dallas provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger ...

Looking deeply into the universe in 3-D

9 hours ago

The MUSE instrument on ESO's Very Large Telescope has given astronomers the best ever three-dimensional view of the deep Universe. After staring at the Hubble Deep Field South region for only 27 hours, the ...

Astrophysicist explores star formation in Orion's belt

10 hours ago

U.S. Naval Research Laboratory (NRL) astrophysicist Dr. T.L. Wilson is part of a multi-national research team that has discovered an outburst in the infrared from a deeply embedded protostar. The Herschel ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.