Scientists turn dents into smart bumps

Aug 23, 2006 feature
This temperature-controlled reversible sign shows how images can appear on a surface simply by heating or cooling. The shape memory effect occurs because a surface “remembers” different arrangements while in different phases. Image credit: Yang-Tse Cheng.

Due to a phenomenon called the shape memory effect (SME), certain "memory metals" can be distorted and then brought back to their original shape by a simple temperature change. While a one-way memory effect has inspired applications since the '60s, and a two-way memory effect can also make objects remember two different shapes, scientists have recently discovered that the effect can now be realized at micro or nano scale on surface – dents can be turned into "mirrored" bumps.

A team of researchers from Michigan State University and General Motors, Yijun Zhang, Yang-Tse Cheng, and David Grummon, is pioneering two-way, reversible shape memory surfaces where micro- and nano-scale surface features can come and go as a result of phase transformations in the materials’ structures.

While SME technology already surrounds us – from bendable eyeglass frames and surgical tools to anti-scald faucets and fire sprinklers – reversible SME will likely be exploited for an even wider range of optical, tribological (rubbing), and microelectromechanical applications. For instance, surfaces can become slippery or sticky by changing temperature, or signs can appear and disappear by heating and cooling (see figure).

In essence, the two-way shape memory effect describes the peculiar ability of certain materials to obtain different shapes depending on two of their structural phases, which can be switched by increasing or decreasing temperature (about a 100 degree K difference). Here, Zhang et al. used nickel titanium (NiTi) – one of the rare materials to exhibit the effect – to further investigate the two-way shape memory effect. After denting or scratching the metal at a low temperature (in its asymmetric, “martensite” phase) the object can be heated (to its symmetric, “austenite” phase) to retain its original, flat shape. Depending on how severely the metal is distorted, the object may keep some of its distorted shape when re-cooled to the austenite phase.

“Typically, SME is a one-way phenomenon,” wrote Zhang, Cheng, and Grummon in a recent issue of Applied Physics Letters. “When a sample is cooled from the austenite to martensite phase again the shape memory alloy (SMA) does not change shape. Two-way shape memory effect refers to the reversible shape changing ability of SMAs during cyclic heating and cooling, which is usually achieved after certain thermal-mechanical training cycles under given stress or strain. … We show that this shape memory effect can [also] be accomplished by a single indentation in the martensite NiTi without additional thermal-mechanical training cycles.”

The team trained NiTi objects to exhibit protruding bumps in the austenite phase by first making dents in the martensite phase, and then “planarizing” (a flattening technique using mechanical polishing) the NiTi to remove the dents before increasing the temperature.

“[M]icrostructure and stress distribution beneath the indents and scratches remain largely intact [after planarization],” wrote Zhang, et al. “As a result, the two-way shape memory effect gives rise to surface protrusion instead of indent depth recovery. ... These protruding structures disappear when the sample was cooled down to the martensite phase.”

In a sense, the scientists tricked the austenite structure to believe that it had to “fix” a dent that had already been fixed, causing the surface to over-compensate and swell out. For the first time, the scientists show that memory metals can be given “false” memories, encouraged to take on a shape they have never experienced by a manipulative preparation process.

Citation: Zhang, Yijun, Cheng, Yang-Tse and Grummon, David S. “Shape memory surfaces.” Applied Physics Letters 89, 041912 (2006).

By Lisa Zyga, Copyright 2006 PhysOrg.com

Explore further: Wild molecular interactions in a new hydrogen mixture

add to favorites email to friend print save as pdf

Related Stories

Designer viruses could be the new antibiotics

13 hours ago

Bacterial infections remain a major threat to human and animal health. Worse still, the catalogue of useful antibiotics is shrinking as pathogens build up resistance to these drugs. There are few promising ...

Too much blood and pain?

Oct 07, 2014

Photographs have long been known to spark more emotional response than news reports alone – the capacity of confronting images to shock exceeds that of text. So it is not surprising that recent photographs ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

2 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

2 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

3 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

Quantum holograms as atomic scale memory keepsake

3 hours ago

Russian scientists have developed a theoretical model of quantum memory for light, adapting the concept of a hologram to a quantum system. These findings from Anton Vetlugin and Ivan Sokolov from St. Petersburg ...

User comments : 0