Protein clue to tailor-made antibiotics

Aug 22, 2006

Scientists at the University of York have made a huge leap forward in the search for 'smarter' antibiotics.

A research group in the Department of Biology has made a significant advance in understanding how bacteria use proteins to conduct a type of biological warfare.

Bacteria like E. coli frequently try to kill each other when resources are scarce using protein antibiotics called colicins, which are potent toxins.

The research led by Professor Colin Kleanthous has discovered a critical element in the mode of action of a class of colicins (so-called DNases) that kill cells by destroying their DNA.

Though most proteins have a folded structure, DNase colicins are only partially so. The scientists have found that the unfolded part of DNase colicin structure makes its way into an unsuspecting bacterium and blocks a key process that lowers the cell's defences and allows the toxin to enter.

Professor Kleanthous said: "Antibiotic resistance is on the increase throughout the world. Understanding how bacteria have evolved to kill each other with protein toxins might offer ways of constructing new, tailor-made antibiotics that target particular microorganisms."

Researchers are now trying to establish what it is about this blocking mechanism (which they've christened 'competitive recruitment') that lowers the cells' defences toward the colicin.

Source: University of York

Explore further: Dairy farms asked to consider breeding no-horn cows

add to favorites email to friend print save as pdf

Related Stories

Harnessing the power of killer bacteria

Jun 19, 2012

(Phys.org) -- Scientists at The University of Nottingham have discovered new clues about a potential weapon in the fight against a dangerous superbug which is becoming increasingly resistant to usual forms ...

E. coli packs a punch - an intestinal insight from ISIS

Dec 23, 2011

Recent studies at the ISIS neutron source, the Science and Technology Facilities Council’s world leading research centre, have given a new insight into how E. coli bacteria, often associated with food ...

Recommended for you

Dairy farms asked to consider breeding no-horn cows

Mar 28, 2015

Food manufacturers and restaurants are taking the dairy industry by the horns on an animal welfare issue that's long bothered activists but is little known to consumers: the painful removal of budding horn ...

Italian olive tree disease stumps EU

Mar 27, 2015

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

China starts relocating endangered porpoises: Xinhua

Mar 27, 2015

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.