Protein clue to tailor-made antibiotics

Aug 22, 2006

Scientists at the University of York have made a huge leap forward in the search for 'smarter' antibiotics.

A research group in the Department of Biology has made a significant advance in understanding how bacteria use proteins to conduct a type of biological warfare.

Bacteria like E. coli frequently try to kill each other when resources are scarce using protein antibiotics called colicins, which are potent toxins.

The research led by Professor Colin Kleanthous has discovered a critical element in the mode of action of a class of colicins (so-called DNases) that kill cells by destroying their DNA.

Though most proteins have a folded structure, DNase colicins are only partially so. The scientists have found that the unfolded part of DNase colicin structure makes its way into an unsuspecting bacterium and blocks a key process that lowers the cell's defences and allows the toxin to enter.

Professor Kleanthous said: "Antibiotic resistance is on the increase throughout the world. Understanding how bacteria have evolved to kill each other with protein toxins might offer ways of constructing new, tailor-made antibiotics that target particular microorganisms."

Researchers are now trying to establish what it is about this blocking mechanism (which they've christened 'competitive recruitment') that lowers the cells' defences toward the colicin.

Source: University of York

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

Harnessing the power of killer bacteria

Jun 19, 2012

(Phys.org) -- Scientists at The University of Nottingham have discovered new clues about a potential weapon in the fight against a dangerous superbug which is becoming increasingly resistant to usual forms ...

E. coli packs a punch - an intestinal insight from ISIS

Dec 23, 2011

Recent studies at the ISIS neutron source, the Science and Technology Facilities Council’s world leading research centre, have given a new insight into how E. coli bacteria, often associated with food ...

Recommended for you

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0