Student Creates Electric Tweezers

Aug 18, 2006
Student Creates Electric Tweezers
A small rod surfs the crests of the magnetic field generated by the five electrodes (dark circles).

The ability to sort cells or manipulate microscopic particles could soon be in the hands of small laboratories, high schools and amateur scientists, thanks to researchers at the University of Pennsylvania School of Engineering and Applied Science. They have created a device, called "electric tweezers," which can manipulate and move almost any object seen on a simple microscope slide.

The research was led by graduate student Brian Edwards, with the help of his advisor Nader Engheta, professor, and Stephane Evoy, adjunct assistant professor, both of Penn's Electrical and Systems Engineering Department. While devices with similar functionality using lasers exist, they often cost upwards of a quarter-million dollars. Edwards' device performs some of the same tasks as laser tweezers, yet at a price anticipated to be in the same range as a high-end desktop computer.

"The tweezers create an electric field that you can use to manipulate almost any object on a microscopic scale. It has the potential of being a powerful tool for research," said Edwards, a doctoral candidate in Penn's Electrical and Systems Engineering Department. "I would prefer not to put a limit on the type of tasks that can be done with it, but I hope it will find uses in anything from picking an individual cell out of a culture to fabricating circuits."

All it would take to use electric tweezers is a computer and a microscope. The tweezers' action occurs on a common glass microscope slide embedded with five electrodes. These electrodes create an electric field that can be used to push, pull, move and spin a selected object in any direction without actual physical contact. Using software Edwards developed, an operator can select an individual object from a microscope image on a computer screen.

Student Creates Electric Tweezers
A schematic of the electronic tweezer setup.

"Different types of particles respond differently to different frequencies in the electric field," Edwards said. "Once you lock onto the object of interest you can move it however you like."

The electric tweezers take advantage of the phenomenon known as dielectrophoresis, where electric fields impart a force upon a neutral particle. In essence, the object that is selected surfs atop the hills and valleys created by subtly changing the electric field. The principle works best on the microscopic scale, which makes it ideal for this application.

"Moving objects with the tweezers is a lot like playing one of those wooden labyrinth games, but, instead of twisting knobs to move a ball in the maze, we're adjusting an electric field to move a small object," Edwards said. "The tweezers move the object by fiddling with the electric field. All the math is done on the computer, so all the user needs to do is move a joystick."

According to Edwards, the electrical field can be attuned to almost anything visible through a microscope. He believes the device will be a boon to smaller laboratories that cannot afford similar devices, as well as to high schools and science hobbyists. Its size, utility and potentially low price could put it into the hands of almost anyone interested in experimenting with the technology.

"We hope that the electric tweezers could mean to science what the PC meant to computing; it's a scientific tool for the rest of us," said Hugo FitzGerald nanotechnology and licensing manager at Penn's Center for Technology Transfer.

The Center is assisting Edwards in patenting and, along with the Bressler Group, bringing electric tweezers to the marketplace.

Source: University of Pennsylvania

Explore further: Heat makes electrons spin in magnetic superconductors

Related Stories

Silicon Valley marks 50 years of Moore's Law

2 hours ago

Computers were the size of refrigerators when an engineer named Gordon Moore laid the foundations of Silicon Valley with a vision that became known as "Moore's Law."

The appeal of being anti-GMO

3 hours ago

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

Micro fingers for arranging single cells

3 hours ago

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Recommended for you

Thinner capsules yield faster implosions

9 hours ago

In National Ignition Facility (NIF) inertial confinement fusion (ICF) experiments, the fusion fuel implodes at a high speed in reaction to the rapid ablation, or blow-off, of the outer layers of the target ...

Direct visualization of magnetoelectric domains

12 hours ago

A novel microscopy technique called magnetoelectric force microscopy (MeFM) was developed to detect the local cross-coupling between magnetic and electric dipoles. Combined experimental observation and theoretical ...

Upside down and inside out

13 hours ago

Researchers have captured the first 3D video of a living algal embryo turning itself inside out, from a sphere to a mushroom shape and back again. The results could help unravel the mechanical processes at ...

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.