Turbulent fibers

Aug 17, 2006
Turbulent fibers
Simulation of the dynamics of a fiber curtain being laid to form a non-woven tissue. © Fraunhofer ITWM

From car interiors to diapers – non-woven tissues are used every-where. Manufacturers are aiming to produce increasingly hard-wearing non-woven tissues from as little plastic as possible. A simulation model has been designed to help optimize the process.

Non-woven tissues are among the everyday items that everyone needs but hardly anyone takes notice of. They hold diapers together, insulate walls and pad out car door linings. The demands they are expected to meet can be very different, depending on where they are used: As an insulation material, the non-woven fabric has to be evenly thick all over, whilst in diapers it needs to be tear-resistant. The manufacturers hope to meet these demands with as little material as possible. Diaper materials are indeed considerably thinner and also tougher today than they were ten years ago. However, optimizing the production of non-woven tissues is harder than it might seem – they are made from delicate plastic fibers created by thousands of tiny nozzles.

These “filaments” are pulled out to their full length by an air flow, then finally – filament by filament – laid down on a kind of conveyer belt. The delicate non-woven sheet is created entirely without weaving or knitting. But there is a problem: The threads flapping in the turbulent air flow are difficult to control.

A team led by Dr. Dietmar Hietel at the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern is investigating and calculating the turbulent formation of the fiber mats and simulating them on the computer. In addition to developing mathematical models, the Fraunhofer team devised a simulation tool called FIDYST. This makes it possible to simulate fiber movement and density distribution – though only in bright colors. “These colored images are not much use to non-woven tissue specialists. What they need is a realistic depiction of the soft structure of the tissue”, says André Stork of the Fraunhofer Institute for Computer Graphics Research IGD in Darmstadt. He has now developed the simulation software IFX, which further processes the density images and finally portrays the chaotic structure of the tissue in a deceptively real way.

The researchers have thus achieved their ambitious goal of adapting the simulation to create the ideal non-woven material. And the simulation program makes it genuinely possible to control real machinery. In future, the researchers will be collaborating with the machine manufacturer Neumag of Neumünster to optimize non-woven tissue production facilities.

Source: Fraunhofer-Gesellschaft

Explore further: 3-D-printable materials deform to change surface area, enabling curvature rather than rigid folding

add to favorites email to friend print save as pdf

Related Stories

Enviro-tracker is wearable for citizen monitoring

28 minutes ago

Mobile hardware and software allow us to count our steps, and to count our calories, but a Vancouver, Canada, startup group asked, what about tracking our environment? TZOA was founded in 2013. Laura Moe, ...

In Curiosity Hacked, children learn to make, not buy

28 minutes ago

With her right hand, my 8-year-old daughter, Kalian, presses the red-hot soldering iron against the circuit board. With her left hand, she guides a thin, tin wire until it's pressing against both the circuit board and the ...

Recommended for you

First drone in Nevada test program crashes in demo

5 hours ago

A drone testing program in Nevada is off to a bumpy start after the first unmanned aircraft authorized to fly without Federal Aviation Administration supervision crashed during a ceremony in Boulder City.

Fully automated: Thousands of blood samples every hour

13 hours ago

Siemens is supplying automation technology for the longest and one of the most cutting-edge sample processing lines in any clinical laboratory. The line, or automation track, 200 meters long, in Marlborough, ...

Explainer: What is 4-D printing?

14 hours ago

Additive manufacturing – or 3D printing – is 30 years old this year. Today, it's found not just in industry but in households, as the price of 3D printers has fallen below US$1,000. Knowing you can p ...

First series production vehicle with software control

14 hours ago

Siemens has unveiled the first electric series production vehicle with the central electronics and software architecture RACE. This technology, developed in the research project of the same name, replaces ...

Amputee puts limb system through its paces

16 hours ago

"Amputee Makes History with APL's Modular Prosthetic Limb" is the headline from Johns Hopkins Applied Physics Laboratory, where a team working on prosthetics observed a milestone when a double amputee showed ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.