Spitzer Reveals New Wonders in the Familiar Orion Nebula

Aug 15, 2006
Spitzer Reveals New Wonders in the Familiar Orion Nebula
This infrared image from NASA's Spitzer Space Telescope shows the Orion nebula, the closest massive star-making factory to Earth. Spitzer surveyed a significant swath of the Orion constellation, beyond what is highlighted in this image. Within that region, called the Orion cloud complex, the telescope found 2,300 stars circled by disks of planet-forming dust and 200 stellar embryos too young to have developed disks. In this color-coded image from Spitzer's Infrared Array Camera, light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight. Image credit: NASA/JPL-Caltech/Univ. of Toledo

The Orion nebula is one of the most famous and easily viewed deep-sky sights. Located in the sword of Orion the Hunter, this distant cloud of gas and dust holds hundreds of young stars. At its center, a cluster of four bright, massive stars known as the Trapezium bathes the entire 30 light-year-wide nebula with powerful radiation, lighting the surrounding gas. Even a modest telescope reveals billowing ripples of matter gleaming eerily across the vastness of space.

A new image taken by the Infrared Array Camera (IRAC) aboard NASA's Spitzer Space Telescope shows the Orion nebula in a new light. The striking color-coded picture reveals pinkish swirls of dust speckled with stars-some of which are orbited by disks of planet-forming dust.

"When I first got a look at the image, I was immediately struck by the intricate structure in the nebulosity, and in particular, the billowing clouds of the gigantic ring extending from the Orion Nebula," said Tom Megeath of the University of Toledo, Ohio, who spearheaded the research while on the staff of the Harvard-Smithsonian Center for Astrophysics.

Located about 1,450 light-years from Earth, the Orion nebula holds special significance for researchers as the nearest region of massive star formation and the nearest populous cluster of very young stars.

"Most stars form in crowded environments like Orion, so if we want to understand how stars form, we need to understand the Orion nebula star cluster," explained Lori Allen of the Harvard-Smithsonian Center for Astrophysics (CfA). Allen is working with Megeath on a long-term, multiwavelength study of Orion using a variety of ground- and space-based observatories.

Approximately 10,000 IRAC exposures were combined to create the full image of the Orion cloud complex-the collection of interstellar gas clouds that includes the Orion nebula.

Spitzer unearthed nearly 2,300 planet-forming disks in the Orion cloud complex. The disks are too small and distant to be resolved by most visible-light telescopes; however, Spitzer easily detects the infrared glow of their warm dust. Each disk has the potential to form planets and its own solar system.

Source: Harvard-Smithsonian Center for Astrophysics

Explore further: Is the universe finite or infinite?

add to favorites email to friend print save as pdf

Related Stories

Carina Nebula survey reveals details of star formation

Mar 09, 2015

A new Rice University-led survey of one of the most active star-forming regions in the galactic neighborhood is helping astronomers better understand the processes that may have contributed to the formation ...

How are planets formed?

Jan 30, 2015

How did the Solar System's planets come to be? The leading theory is something known as the "protoplanet hypothesis", which essentially says that very small objects stuck to each other and grew bigger and ...

The 'Serpent' star-forming cloud hatches new stars

May 30, 2014

(Phys.org) —Stars that are just beginning to coalesce out of cool swaths of dust and gas are showcased in this image from NASA's Spitzer Space Telescope and the Two Micron All Sky Survey (2MASS). Infrared ...

Recommended for you

Is the universe finite or infinite?

Mar 27, 2015

Two possiblities exist: either the Universe is finite and has a size, or it's infinite and goes on forever. Both possibilities have mind-bending implications.

'Teapot' nova begins to wane

Mar 27, 2015

A star, or nova, has appeared in the constellation of Sagittarius and, even though it is now waning, it is still bright enough to be visible in the sky over Perth through binoculars or a telescope.

Dark matter is darker than once thought

Mar 27, 2015

This panel of images represents a study of 72 colliding galaxy clusters conducted by a team of astronomers using NASA's Chandra X-ray Observatory and Hubble Space Telescope. The research sets new limits on ...

Galaxy clusters collide—dark matter still a mystery

Mar 26, 2015

When galaxy clusters collide, their dark matters pass through each other, with very little interaction. Deepening the mystery, a study by scientists at EPFL and the University of Edinburgh challenges the ...

Using 19th century technology to time travel to the stars

Mar 26, 2015

In the late 19th century, astronomers developed the technique of capturing telescopic images of stars and galaxies on glass photographic plates. This allowed them to study the night sky in detail. Over 500,000 ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.