Researchers seed, heat and grow carbon nanotubes in long tubing

Aug 03, 2006

In less than 20 minutes, researchers at New Jersey Institute of Technology (NJIT) can now seed, heat and grow carbon nanotubes in 10-foot-long, hollow thin steel tubing.

"The work took us three years to develop and get right, but now we can essentially anchor nanotubes to a tubular wall. No one has ever done anything like this before," said lead researcher Somenath Mitra, PhD, professor and acting chair of NJIT's Dep't of Chemistry and Environmental Science. Graduate and post-doctoral students who worked on the project are Mahesh Karwa, Chutarat Saridara and Roman Brukh.

The ground-breaking method will lead to improvements in cleaner gasoline, better food processing and faster, cheaper ways to clean air and water.

The discovery was recently described in the Journal of Material Chemistry, June 14, 2006, by Mitra and his team in "Selective Self-assembly of Single Walled Carbon Nanotubes in Long Steel Tubing for Chemical Separation." Other journals featuring their work are Chemical Physics Letters and Carbon and Analytical Chemistry.

A carbon nanotube is a molecular configuration of carbon in a cylindrical shape. The name is derived in part from the tube's miniscule size. Scientists estimate nanotubes are 50,000 times smaller than a human hair.

Until recently researchers have relied on the nanotubes which researchers purchase as a powder. The nanotubes are said to have remarkable, if not almost magical, properties. For example, by simply mixing the powder with polymers or chemicals, films and composites can be made.

However, the method has drawbacks. "We have never been able to anchor the powder to a large surface, nor can we grow the nanotubes in a large device. Typically we could only produce them in minute amounts, if we used the powder substance," said Mitra. Now everything has changed.

Using a catalyst either prepared on the steel surface or enabled by a chemical deposition process, the NJIT inventors have created nanotubes which can stick to the walls of narrow or wide tubes. And, they can grow considerably larger amounts of them, making the process more attractive and viable for industrial usages.

Source: New Jersey Institute of Technology

Explore further: Carbyne morphs when stretched: Calculations show carbon-atom chain would go metal to semiconductor

add to favorites email to friend print save as pdf

Related Stories

Boron 'buckyball' discovered

Jul 13, 2014

The discovery 30 years ago of soccer-ball-shaped carbon molecules called buckyballs helped to spur an explosion of nanotechnology research. Now, there appears to be a new ball on the pitch.

Project at IBM looks to carbon nanotube future

Jul 02, 2014

How can miniaturization continue beyond the limits of current silicon-based device technology? A project at IBM aims to have transistors built using carbon nanotubes, ready to take over from silicon transistors ...

Scientists explore mash-up of vacuum tube and MOSFET

Jun 25, 2014

Thumb-size vacuum tubes that amplified signals in radio and television sets in the first half of the 20th century might seem nothing like the metal-oxide semiconductor field-effect transistors (MOSFETs) that ...

Chemists develop novel catalyst with two functions

Jul 09, 2014

Chemists at the Ruhr-Universität Bochum have made a decisive step towards more cost-efficient regenerative fuel cells and rechargeable metal-air batteries. They developed a new type of catalyst on the basis ...

Biodistribution of carbon nanotubes in the body

Jul 04, 2014

Having perfected an isotope labeling method allowing extremely sensitive detection of carbon nanotubes in living organisms1, CEA and CNRS researchers have looked at what happens to nanotubes after one year inside an animal. ...

Recommended for you

An anti-glare, anti-reflective display for mobile devices?

Jul 16, 2014

If you've ever tried to watch a video on a tablet on a sunny day, you know you have to tilt it at just the right angle to get rid of glare or invest in a special filter. But now scientists are reporting in the journal ACS Ap ...

New materials for future green tech devices

Jul 15, 2014

From your hot car to your warm laptop, every machine and device in your life wastes a lot of energy through the loss of heat. But thermoelectric devices, which convert heat to electricity and vice versa, ...

User comments : 0