Researchers seed, heat and grow carbon nanotubes in long tubing

Aug 03, 2006

In less than 20 minutes, researchers at New Jersey Institute of Technology (NJIT) can now seed, heat and grow carbon nanotubes in 10-foot-long, hollow thin steel tubing.

"The work took us three years to develop and get right, but now we can essentially anchor nanotubes to a tubular wall. No one has ever done anything like this before," said lead researcher Somenath Mitra, PhD, professor and acting chair of NJIT's Dep't of Chemistry and Environmental Science. Graduate and post-doctoral students who worked on the project are Mahesh Karwa, Chutarat Saridara and Roman Brukh.

The ground-breaking method will lead to improvements in cleaner gasoline, better food processing and faster, cheaper ways to clean air and water.

The discovery was recently described in the Journal of Material Chemistry, June 14, 2006, by Mitra and his team in "Selective Self-assembly of Single Walled Carbon Nanotubes in Long Steel Tubing for Chemical Separation." Other journals featuring their work are Chemical Physics Letters and Carbon and Analytical Chemistry.

A carbon nanotube is a molecular configuration of carbon in a cylindrical shape. The name is derived in part from the tube's miniscule size. Scientists estimate nanotubes are 50,000 times smaller than a human hair.

Until recently researchers have relied on the nanotubes which researchers purchase as a powder. The nanotubes are said to have remarkable, if not almost magical, properties. For example, by simply mixing the powder with polymers or chemicals, films and composites can be made.

However, the method has drawbacks. "We have never been able to anchor the powder to a large surface, nor can we grow the nanotubes in a large device. Typically we could only produce them in minute amounts, if we used the powder substance," said Mitra. Now everything has changed.

Using a catalyst either prepared on the steel surface or enabled by a chemical deposition process, the NJIT inventors have created nanotubes which can stick to the walls of narrow or wide tubes. And, they can grow considerably larger amounts of them, making the process more attractive and viable for industrial usages.

Source: New Jersey Institute of Technology

Explore further: Tiny magnetic DNA particles protect olive oil from counterfeiters

add to favorites email to friend print save as pdf

Related Stories

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

A beautiful, peculiar molecule

Apr 16, 2014

"Carbon is peculiar," said Nobel laureate Sir Harold Kroto. "More peculiar than you think." He was speaking to a standing-room-only audience that filled the Raytheon Amphitheater on Monday afternoon for the ...

Recommended for you

Nanomaterial outsmarts ions

Apr 22, 2014

Ions are an essential tool in chip manufacturing, but these electrically charged atoms can also be used to produce nano-sieves with homogeneously distributed pores. A particularly large number of electrons, ...

User comments : 0

More news stories

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...