Sequencing the Genome of a New Kind of Methane Producer

Aug 03, 2006
Sequencing the Genome of a New Kind of Methane Producer
A mixed culture, used to sequence the complete genome of a methane producer, RC-I archaeon. Hybridisation, with specific probes for RC-I Archaea (red fluorescent cells) and bacteria (green fluorescent cells), help identify the various components of the mixed culture. The scale is 10 micrometres. Image: Max Planck Institute for Terrestrial Microbiology

About 10 to 25 percent of the world's methane emissions come from flooded rice paddies. Methane is a greenhouse gas produced by various groups of microorganisms (methanogenic Archaea). Oxygen is usually highly toxic for these microorganisms. The major producer of methane in the roots of rice plants is what is known as "Rice Cluster I" (RC-I) Archaea.

The mechanisms that give these Archaea a competitive advantage remained unexplained, because it was impossible to get a pure culture of them. Now, scientists from the Max Planck Institute for Terrestrial Microbiology in Marburg, Germany and the Max Planck Institute for Molecular Genetics in Berlin have fully sequenced the genome of an RC-I archaeon from a methane-producing microbial mixed culture. From the genome sequence, the researchers were able to deduce the existence of a number of enzymatic mechanisms, unknown in methanogenic Archaea until now. The mechanisms help the RC-I Archaea to survive when oxygen is present. They allow the RC-I Archaea to adapt specifically to the oxygen-rich area around the roots of the rice plant. The results explain why RC-I Archaea have a selective survival advantage (Science, July 21, 2006).

In the current study, Max Planck researchers from Marburg and Berlin investigated the complete genome sequence of an RC-I archaeon that appears frequently in the mixed culture MRE50. As a rule, the starting point for analysis of a complete microbial genome is a pure culture - and its corresponding homogeneous component of genetic information. But in the case of RC-I Archaea, no pure culture was available.

So all the genetic information of the mixed culture MRE 50 served as the starting point for sequencing the complete RC-I genome. Such heterogeneous genetic information, stemming from various microorganisms in the mixed culture, is called a metagenome. One particular analytical challenge was filtering out the complete, homogeneous genome of a defined RC-I archaeon from the metagenome. The researchers were able to do this using a specific bio-informatics analytical methodology.

The genome of the RC-I archaeon is made from 3.2 million base pairs, and codes for 3,103 proteins. The proteins can, among other things, be organized according to their methanogenic metabolism - that is, how they create methane simply by reducing carbon dioxide with hydrogen. Enzymes for the analysis of alternative methanogenic nutrients are not encoded by the RC-I genome. The RC-I archaeon can thus be categorised as hydrogenotroph Methanogenic Archaea can only produce methane, and the energy that comes from it, when oxygen is completely absent. The presence of oxygen is normally very hostile to them.

However, this is not the case for RC-I Archaea - the RC-I genome codes for enzymatic mechanisms which are unique for methanogenic Archaea and make it possible for them to survive in an oxygenated environment. A whole group of enzymes belongs to this mechanism. These enzymes quickly detoxify highly reactive oxygen species, such as superoxide anion or hydrogen peroxide. These oxygen species are extremely toxic for living cells. When oxygen is present, RC-I Archaea quickly switch to a zymoma fermentative.

Sequencing the RC-I genome offers the groundwork for developing a means of monitoring the activity of RC-I Archaea in their natural environments, using molecular biological methods. It is uncertain, however, how long it will take before we can actually reduce the methane production of RC-I Archaea - and methane emissions from places like rice paddies.

Citation: Christoph Erkel, Michael Kube, Richard Reinhardt, Werner Liesack
Genome of Rice Cluster I Archaea - the Key Methane Producers in the Rice Rhizosphere
Science, July 21, 2006

Source: Max-Planck-Institute

Explore further: Citizen scientists match research tool when counting sharks

add to favorites email to friend print save as pdf

Related Stories

Madagascar to drain crude from stricken tanker

39 minutes ago

Madagascar will during the weekend pump crude from a tanker that ran aground a week ago off its picturesque northern coast to prevent a spill, maritime authorities said Thursday.

Tech giants settle suit over no-poaching deal

52 minutes ago

Tech giants Apple, Google, Adobe and Intel settled a lawsuit Thursday that charged they had colluded to hold salaries down by agreeing to not poach each other's staff.

Recommended for you

Genome yields insights into golden eagle vision, smell

2 hours ago

Purdue and West Virginia University researchers are the first to sequence the genome of the golden eagle, providing a bird's-eye view of eagle features that could lead to more effective conservation strategies.

Genetic code of the deadly tsetse fly unraveled

3 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

3 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

4 hours ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...