Eliminating the 'Twin'

Aug 02, 2006

A University of Arkansas researcher has received a grant to study the dynamics of synthesizing molecules with the same "handedness."

Bob Gawley, professor of chemistry and biochemistry, has received $380,000 from the National Science Foundation to study the dynamics of stereoselective reactions, which are essential to drug synthesis.

When researchers create a drug, their product often has an almost identical molecular twin, known as an enantiomer. The enantiomer physically and chemically resembles the pharmaceutical product, except that it reacts differently to polarized light and may not function in the same way the drug does. The two enantiomers are related by reflection in a mirror, just as the right hand is the mirror image of the left.

For many years, researchers thought that these twin-like enantiomers were harmless filler, but some have proved to be the equivalent of "errant twins," potentially causing health problems. Since these findings, the Food and Drug Administration now requires pharmaceutical companies to create pure mixtures that only include the active enantiomer - a process that requires either throwing out half of the mixture, or creating one enantiomer through stereoselective reactions that select for the correct "twin."

At the microscopic level in the natural world, many molecules have the properties of enantiomers. For example, all amino acids are one enantiomer, and all sugars are the opposite enantiomer. Biological receptors also exhibit this property, Gawley said, making it imperative that biomedicines be made from molecules of the same enantiomer.

Despite the fact that pure forms are often found in nature, synthesizing them has turned out to be more challenging, said Gawley, a professor in the J. William Fulbright College of Arts and Sciences.

"The molecules are tumbling around in solution and there are many forces that determine how atoms attach to a molecule," Gawley said.

Gawley will study the properties of stereoselective reactions to help find better ways to create pure forms of enantiomers and to better understand the dynamics of the synthesis of these compounds.

Source: University of Arkansas

Explore further: Researchers create designer 'barrel' proteins

add to favorites email to friend print save as pdf

Related Stories

Heavy rains leave 22 dead in Nicaragua

4 hours ago

Days of torrential rains in Nicaragua left 22 people dead and left homeless more than 32,000 others, according to an official report Saturday.

New iPad cellular models have Apple SIM flexibility

4 hours ago

Cellular-enabled iPad models are under a new paradigm, said AppleInsider, regarding the Apple SIM. Apple's newest iPad models with cellular connectivity use a SIM card which tech sites said could eventually ...

Recommended for you

Researchers create designer 'barrel' proteins

14 hours ago

Proteins are long linear molecules that fold up to form well-defined 3D shapes. These 3D molecular architectures are essential for biological functions such as the elasticity of skin, the digestion of food, ...

World's fastest manufacture of battery electrodes

21 hours ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

User comments : 0