Magnetic Nanocapsules for Smart Drug Delivery

Jul 31, 2006

By combining peptide-based polymers with modified iron oxide nanoparticles, researchers at the Centre National de la Recherche Scientifique in Pessac, France, have developed nanoparticles that can be manipulated in a magnetic field and that can respond to changes in pH and other physiologic stimuli.

These nanoparticles, which can be modified to include targeting molecules, could serve as a versatile, smart platform for delivering drugs and imaging agents to tumors.

Writing in the journal Progress in Solid State Chemistry, Sébastien Lecommandoux, Ph.D., and his colleagues describe their use of what are called diblock copolymers, made of peptides to create stimuli-responsive nanoparticles. The investigators make these polymers by first stringing together short stretches of single amino acids to form peptide blocks.

They then link two of these blocks together in an alternating pattern to create the diblock copolymer. Through the careful choice of the amino acid constituents, and hence the two blocks, that go into a polymer the investigators are able create nanoparticles that can respond to a wide range of conditions.

When the investigators mixed the diblock copolymers with iron oxide nanoparticles modified to be compatible with either water or organic solvents, the components self-assemble into stable nanoparticles. Depending on the choice of polymer and the form of iron oxide used, the resulting nanoparticles are either hollow or have a core-shell structure.

The investigators note that the conditions they used to prepare these various nanoparticles are amenable for encapsulating drug molecules, too. They also comment that they can deform these nanoparticles by changing pH and applying a magnetic field, an event that would release entrapped drug.

This work is detailed in a paper titled, “Smart hybrid magnetic self-assembled micelles and hollow capsules.” An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Medical nanoparticles: local treatment of lung cancer

add to favorites email to friend print save as pdf

Related Stories

Magnetic nanoparticles enhance performance of solar cells

Feb 25, 2015

Magnetic nanoparticles can increase the performance of solar cells made from polymers - provided the mix is right. This is the result of an X-ray study at DESY's synchrotron radiation source PETRA III. Adding ...

Progress in using magnetic fields to target tumors

Oct 19, 2012

(Phys.org)—Since the advent of cancer nanotechnology, researchers have sought to use magnetic fields to increase the concentration of drug-loaded iron oxide nanoparticles that reach a tumor. However, magnetic fields drop ...

Protein-engineered cages aid studies of cell functions

Nov 19, 2014

Carbon monoxide (CO) plays an important role in cell functions, by signalling responses that counteract inflammation, and cell growth and death. As a result, researchers have been in pursuit of molecules ...

Quantum mechanics to charge your laptop?

Sep 18, 2014

Top scientists from UC Berkeley and MIT found the expertise they lacked at FIU. They invited Sakhrat Khizroev, a professor with appointments in both medicine and engineering, to help them conduct research ...

Recommended for you

Medical nanoparticles: local treatment of lung cancer

20 hours ago

Nanoparticles can function as carriers for medicines to combat lung cancer: Working in a joint project at the NIM (Nanosystems Initiative Munich) Excellence Cluster, scientists from the Helmholtz Zentrum ...

New nanodevice defeats drug resistance

Mar 02, 2015

Chemotherapy often shrinks tumors at first, but as cancer cells become resistant to drug treatment, tumors can grow back. A new nanodevice developed by MIT researchers can help overcome that by first blocking ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.